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Letter From the Editor
By Dr. Rolf Wetzer, CFTe, MFTA 

Dear IFTA Colleagues and Friends:

When Aurélia Gerber left as Journal chair within the IFTA board, I wondered, “who’s going 
to fill her shoes?” She edited the Journal for the last six years, and we are very proud of every 
single issue that she produced. Then, Mohamed called and asked me to help out with the 
Journal—and I instantly knew that the bar probably was raised too high. Therefore, the first 
thing I want to do is to thank Aurélia for the awesome work she has done for IFTA. 

Autumn is IFTA’s high season. We have the Annual General Meeting, the Annual 
Conference, and publication of the Journal. This year’s conference will be in Egypt, hosted by 
ESTA. It will be the 32nd edition of the conference, and the theme will be “History Speaks”. 
I still recall the 2008 conference in Sharm el Sheikh. That was our 20th conference and first 

one held in that region of the world. It felt good to go to Egypt at that time, and I am looking forward to returning to 
Cairo in October.

This year’s Journal will be packed with a lot of papers coming from different sources. For the first time we will 
have an epitaph for a fellow technician from Australia. This is our contribution to “History Speaks”.

The first two papers are from our MFTA program. One paper is about technical sector rotation, 
and the other one presents an original cycle technique. If you are interested in writing an MFTA 
thesis yourself, please register for the program via our website: www.ifta.org.

I am very proud that we have a very good and stable relationship with the National Association of 
Active Investment Managers (NAAIM). For several years in a row, NAAIM has allowed us to publish 
their Wagner/Founders award paper. This year, the winner is a colleague who is also a member of 
our Italian society SIAT. I would like to mention that NAAIM welcomes non-NAAIM members to 
visit its homepage at www.naaim.org, where you will find many other valuable papers. 

We have two papers from colleagues who participated in VTAD’s award. I especially would like 
to thank both authors, who not only dared to publish their work with us, but also took the effort to 
translate and edit their work from German into English.

Traditionally, the greatest resources for the Journal are our colleagues from all over the world. 
They contributed four articles. We feel very honored that we can present an article written 
by Thomas Bulkowski. Thomas is one of the world’s leading authorities in graphical pattern 
recognition. 

As usual, the Journal will close with a book review written by Regina Meani, one of our long-time IFTA Journal 
editors and writers. She has been working for the Journal since 2007. Thank you very much for all the time and 
volunteer work that you donated to IFTA over all the years.

Last, but not least, we would like to thank the production team at Management Solutions Plus, and in particular, 
Linda Bernetich, Lynne Agoston, and Jennifer Olivares for their administrative, technical editing, and publishing work.

I hope to see you all in Cairo!
Best regards,
Dr. Rolf Wetzer, CFTe, MFTA

…the greatest 
resources for the 
Journal are our 
colleagues from all 
over the world.
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Abstract
The U.S. stock market is one of the most difficult for 

professional fund managers to beat. Statistics say that more 
than 97% of actively managed funds have failed to do better 
than the U.S. stock market in the last 10 years. Those are really 
amazing numbers. Private investors are not doing any better. 
They can try to beat the market by relying on professional 
managers, knowing that they will most likely do worse. Or they 
can give up trying to do it themselves but even in this case 
most of them have neither the skills nor the means to do it. 
Moreover, they also have to deal with their own emotionality, 
which pushes them to liquidate their investments during the 
strong downturns typical of the stock markets. In short, it 
is a very difficult situation for both managers and investors. 
In this paper, I will present an operational strategy which, 
through technical analysis, relative strength, sector rotation, 
and capital management, enables us to invest and achieve the 
objective of beating the American stock market in the long term. 
The presented strategy has the great advantage of being able 
to be implemented by both small private investors and large 
managers, via financial advisors.

Introduction

Identification of the Trouble
An investor who today wants to start investing his savings in 

the stock market has two options:

•• The first is to rely on active management. In this case, there 
are professional managers who invest the capital of their 
clients with the aim of doing better than a specific reference 
market called “Benchmark”; “Doing better” is understood as 
achieving higher performance with the same or even lower 
risk. In this case, the investor wants to try to beat the market 
but takes the risk of being able to do worse.

•• The second option is to rely on passive management. In 
this case, there are funds that invest investors’ capital by 
passively replicating the trend of a declared benchmark. The 
goal is not to do better than the benchmark but simply

•• to do the same as the benchmark. Therefore, have as close 
a return as possible on the same volatility. In this case, the 
possibility of doing better than the market is waived, but the 
risk of doing worse is avoided.

Let’s focus on active management right now.

Table 1 represents research conducted by Morningstar. The 
table shows the percentage of actively managed funds that 

have been beaten by their respective benchmarks in different 
timeframes ranging from one year up to 10 years.

Table 1. Actively Managed Funds That Beat the Benchmark

Let’s go to the last column on the right—the one that shows 
the measured data over a 10-year time horizon. The results are 
terrible.

If we take the American stock market, 97.8% of all active 
funds have done worse than the benchmark. On the global stock 
market, this does not change. In this case, the number rises 
to 98.85%. Practically only about two out of every 100 funds 
available has managed to do better than the market, which is to 
achieve the purpose for which they exist. The column with the 
longest time horizon has been taken for analysis because this 
eliminates the fortune/bad luck effect and because when you 
invest in the stock market, you do so with a long-term objective.

Having said that, it is clear what the problem is:

•• Investors side: To date, those who want to try to invest with 
the aim of doing better than the market do not have valid 
tools to try. The majority of those who tried to do this 10 
years ago by relying on active funds find themselves with 
the opposite result. The numbers are striking and play 
against active management. Those who have tried to do it by 
themselves have realised that they have neither the skills nor 
the means to do it.

•• Managers side: Due to the high management fees and the 
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strong competition on the markets, they are unable to 
produce value for their customers. In fact, they destroy it.

There is also another problem related to behavioural finance. 
One of the most important criticalities that has been found 
with investors is the one related to the handling of emotions. 
It is true, in fact, that the stock market offers great returns in 
the long term, but it is also true that in the short term, it can 
produce significant losses.

It is not uncommon to see a stock market losing more than 
50% of its value in a few months as a result of a depressive phase 
of the economy. However, the investor, in the vast majority of 
cases, cannot tolerate such losses and often finds himself selling 
and exiting the market at the very worst times.

Identification of the Aim
Once the two real problems are highlighted, it becomes pretty 

easy to identify the objectives:

•• Finding an active management approach that allows you to 
create value for your own capital and your customers. In other 
words, to find a strategy that, once the benchmark to be beaten 
has been identified, actually allows higher yields to be achieved 
for the same risk in the long term—doing what 98% of the 
already existing active funds failed to do in the last 10 years.

•• Finding an approach to contain losses during negative market 
phases in order to reduce the negative effects of behavioral 
finance and investors’ emotional decisions.

Realization of the Strategy
To implement the strategy that is the subject of this research, 

I have started from the identification of the target user. The first 
question I asked myself was: who is this strategy aimed at?

The answer to this question is very simple. There are four 
target users of this strategy:

•• Private investors who want to invest their own capital.
•• Financial advisors who want to manage their clients’ capital 

more actively and efficiently.
•• Active fund managers who want to have a mechanical 

approach to beat the benchmark.
•• Passive funds that want to make more efficient products 

based on mechanical strategies.

As you can see, the objective of the research was very 
ambitious right from the start. In fact, these four possible 
end-users have different skills, different capital, and different 
instrumentation. A private investor has lower capital and less 
expertise and complex equipment than, for example, an active 
fund manager.

To make a “dress” that would suit all these subjects, I had to 
focus on simplicity—just the simplicity that has characterized 
my operations in the financial markets in over

10 years of experience. I am a strong supporter of the “KISS” 
approach, “Keep it Simple, Stupid”.

It is from this need, therefore, that the idea of implementing a 
strategy that is simple to apply was born.

In fact, a simple system can be used indiscriminately by 

investors with fewer skills and tools and by professional 
managers. A complex system, on the other hand, could have 
been used by professional managers but would have cut off 
consultants and private investors.

In addition, a system with simple operation is also more 
controllable than a complex system. Monitoring and optimizing 
a system composed of two variables is undoubtedly easier than 
monitoring a system composed of 20 variables. Plus, note that 
simpler does not mean more trivial and less professional.

To do this, I have therefore started from the following points:

•• Few indicators to make the system easily replicable and, 
above all, controllable.

•• Few rules to avoid unnecessary complexities that often 
generate inefficiencies.

•• Weekly operation to be followed, even by those who cannot 
stay every day on the markets.

•• Few operations that last longer to reduce the commission 
impact of buying and selling operations.

•• Mechanisation to be able to check if the current results are 
in line with those of the past and to be able to also put it into 
practice with software.

•• Replicable with financial instruments accessible not only to 
professional managers and not only to investors with high 
capital.

Then, I looked for a methodology that would have helped to 
contain losses in the negative phases of the markets.

As a reference market to beat, I gave myself precisely that 
American stock market that 98% of the funds failed to beat. 
Specifically, I used the Dow Jones US Total Market.

The Fundamental Idea
The first concept from which I started is the following:

If I want to beat the American stock market and if I want to 
implement a strategy that can also be used by small private 
investors, I must develop a system that first of all contains the 
losses during the negative phases.

To do this, my reasoning began with an analysis of the 
market. The first comments were:

•• The stock market development is the result of the 
development of the country’s economy.

•• The development of the country’s economy is the result of the 
development of the individual sectors that make up the country.

•• The stock market performance is the result of the 
performance of the individual sectors that make up it.

When the stock market grows, it does not mean that all 
sectors are growing simultaneously.

There will be some sectors that are growing, others that are 
stable, and others that are decreasing. In addition, stock market 
bull markets are normally driven by a few sectors that are 
growing very strongly.

I have therefore come to the conclusion that to do better than 
a given stock market you need to:

IFTA JOURNAL      2020 EDITION

IFTA.ORG PAGE 5



•• Own the sectors that drive the upward cycles of the market 
and discard all others (sectoral rotation).

•• Be as liquid as possible during market bearish cycles and 
increase exposure to dominant sectors during bullish ones.

The Sector Rotational Model
Sectoral rotation means the approach whereby capital is 

rotated from sectors that are doing worse than the market to 
sectors that are doing better. This type of approach is mainly 
used for investment purposes, as it produces better results 
considering the long time horizon. If in the short term, due to the 
irrationality of operators and excessive background noise, the 
results of this methodology are disappointing, in the long term 
you can appreciate all the benefits. Relative strength analysis is 
very well suited for carrying out sector rotation strategies.

The Relative Strength
The “relative strength” is a technical analysis tool that allows 

you to assess the strength of one financial instrument over 
another. It is nothing more than a ratio between two financial 
instruments that is represented by a line that can fluctuate 
unlimitedly above and below zero.

Figure 1. Relative Strength Line (RS Line)

When the relative strength line (called RS line) grows, it 
means that the instrument at the numerator is doing better 
than the instrument at the denominator.

Vice versa, when the RS line decreases, it means that the 
instrument at the denominator is doing better than the one at 
the numerator. The relative strength indicator is a very good 
medium and long-term indicator and is very useful for:

•• Intermarket analysis to determine which markets (e.g., stock, 
bond, gold) are doing best at a given time.

•• Sectoral rotation aimed at selecting those sectors that are 
doing better than their market of reference at a given time.

•• Stock picking aimed at selecting the best shares present 
within the best sectors of a specific reference market.

All this information that gives us relative strength is of great 
importance when composing a portfolio. The relative strength is 
mainly used for top-down analyses (markets > sectors > shares).

So, we start from an aggregate analysis and then we go down 
to the individual sectors, and we finally conclude with the 
individual actions.

One problem that must always be taken into account when 
using relative strength is that a financial instrument can show 
greater relative strength even when its prices are falling. In 
fact, if the prices of this instrument are falling, but to a lesser 
extent than the market used for the comparison, the instrument 
will have a relatively greater strength. If we were to rely only 
on the information provided by relative strength, we would 
risk putting in the portfolio financial instruments that are, 
yes, doing better than the market of comparison, but in reality, 
their value is decreasing and therefore should be discarded. It 
follows, therefore, that the individual relative strength analysis 
is not sufficient but must be combined with another technique to 
identify price trends.

Identifying the price trend of a financial instrument you want to 
invest in is of fundamental importance. In fact, according to one of 
the most important principles of technical analysis, once a trend 
develops, it is more likely to continue than to reverse its direction.

Therefore, the objective of an investor must be to invest in 
the direction of the trends identified. But how is it possible to 
mechanically identify a trend?

To do this, I decided to use the Donchian Channel as an indicator.

The Donchian Channel
The Donchian channel is an indicator named after its creator, 

Richard Donchian. It is an indicator formed by two bands, one 
upper and one lower, which move according to the price trend. 
The upper and lower bands respectively show the maximums 
and minimums recorded by the prices in the last x periods 
(where x is a value that we choose).

Figure 2. Upper and Lower Bands of a Donchian Channel

The interpretation of the indicator is as follows:

•• When prices close above the upper band of the channel, it 
means that a resistance has been broken and therefore that 
we are in the presence of a bullish trend;

•• When prices close below the lower band of the channel, it 
means that a support has been broken and therefore that we 
are in the presence of a bearish trend.

Through the analysis of price movements in relation to 
Donchian channels, it is therefore possible to mechanically 
establish the beginning and end of a trend.
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Figure 3. Using a Donchian Channel to Identify the 
Beginning and End of a Trend in Price Action

The Money Management
Relative strength and Donchian channels are not sufficient, 

however, to ensure the implementation of a good strategy. Any 
strategy that respects itself needs capital and risk management 
rules to avoid compromising the investor’s capital during 
adverse market phases. Even the best strategy in the world, 
without proper capital management, would sooner or later lead 
to financial ruin.

To protect the capital, I have therefore used a very prudent 
capital management that allows for limiting the losses during 
the adverse phases of the markets.

Materials and Methods

The Timeframe
The time horizon was considered to be a period of time 

from 01 May 2000 to 01 March 2019. The 19-year time 
horizon is sufficiently high to generate an adequate number 
of transactions and to be able to test the strategy on all the 
different market phases crossed. This timeframe used is perfect 
for stressing the strategy, as it includes the black decade. The 
black decade is the period from 2000 to 2010, when the financial 
markets went through two of the biggest crises of all time: that 
of 2000 and that of 2008. Since 2000, it has also been possible 
to assume the worst case in which an investor had started a few 
weeks before the start of one of the worst periods ever. Let’s 
take a closer look at this time horizon.

Figure 4. Dow Jones U.S. Total Market’s Trends

As you can see from the graph, the time horizon 2000–2009 
allows you to test the strategy on nine different phases:

•• Four bullish phases
•• Two bearish phases among the worst in history
•• Three lateral phases in which there were strong 

nondirectional oscillations

The period 2000–2019 can be better broken down into the 
following nine phases:

•• Reductionist (May 2000–September 2002) Movement: -48%
•• Bullish (September 2002–October 2007) Movement: +100%
•• Reductionist (October 2007–February 2009) Movement: -52%
•• Bullish player (February 2009–April 2011) Movement: +92%
•• Lateral (April 2011–October 2012) Movement: -18%
•• Bullish (October 2012–February 2015) Movement: +50%
•• Lateral (February 2015–October 2016) Movement: -10%
•• Bullish (October 2016–January 2018) Movement: +32%
•• Lateral (January 2018–March 2019) Movement: -15%.

Indicators
The indicators used in the strategies presented are:

•• Relative strength on a weekly basis between the industry and 
the American stock market.

•• Simple 25-period moving average of the relative strength 
built on the RS line.

•• Donchian channel to 25 periods on a weekly basis.

Operating Rules
The operational rules used to implement this strategy can be 

grouped into four fields:

•• Entry rules establishing the purchase of the financial 
instrument.

•• Exit rules that establish the sale of the financial instrument.
•• Capital management rules that determine how much capital 

to invest in each individual transaction.
•• Other rules establishing further characteristics of the strategy.

There are three buying rules:

•• The relative strength line is above its simple 25-week moving 
average.

•• Prices close the weekly candle over the top band of the 
Donchian channel at 25 weeks.

•• The position opens at the opening of the week following the 
week of the signal.

There are two exit rules:

•• Prices close the weekly candle below the lower band of the 
Donchian channel at 25 weeks.

•• The position closes at the opening of the week following the 
closing signal.
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Other rules and parameters:
•• Initial capital $100,000.
•• Sectoral relative strength measured against Dow Jones U.S. 

Total Market (djus.x).
•• Commissions per trade: 0%.
•• Start date: 01 May 2000.
•• Date of end 01 March 2019.
•• Long-term only operations.
•• No leverage.

Two Variations
The strategy has been presented in two versions that differ 

from each other in the rule of management of the capital used. 
Specifically, we have:

•• Fixed size strategy: Each position weighs 5% of the initial 
capital.

•• Percentage size strategy: Each position weighs 5% of the 
current capital.

The Benchmark
The benchmark to challenge identified for this research is the 

Dow Jones U.S. Total Market (djus.x).
This benchmark was chosen, as it represents the entire 

American stock market. Taking an index such as the S&P500 
as a benchmark would have been incorrect, as it would have 
considered only large capitalisation companies to the exclusion 
of all other small and medium capitalisation companies. In 
the period from May 2000 to March 2019, the index achieved 
a performance of 107% against a maximum drawdown of 56% 
between October 2007 and February 2009. The graph is shown 
below.

Figure 5. Dow Jones U.S. Total Market in the Long Run

Financial Instruments Used
The Dow Jones indices were used to create, develop, and test 

the strategy. The choice fell on these on these indices, as they 
allowed for:

•• 5A large number of sectors to be analysed.
•• The study to be carried out from 2000 until 2019.

Such a broad analysis over such a long time horizon could not 
be carried out with indices of other companies.

The indices used were:

•• Dow Jones U.S. Total Market (djus.x)
•• Dow Jones U.S. Tech Hard Equipment (djustq.x)
•• Dow Jones U.S. Telecom Equipment(djusct.x)
•• Dow Jones U.S. Aerospace & Defence (djusae.x)
•• Dow Jones U.S. Automobile (djusau.x)
•• Dow Jones U.S. Basic Resource (djusbs.x)
•• Dow Jones U.S. Biotech (djusbt.x)
•• Dow Jones U.S. Chemicals (djusch.x)
•• Dow Jones U.S. Consumer Goods (djusnc.x)
•• Dow Jones U.S. Consumer Services (djuscy.x)
•• Dow Jones U.S. Delivery Services (djusaf.x)
•• Dow Jones U.S. Electronic Equipment (djusai.x)
•• Dow Jones U.S. Financials (djusfn.x)
•• Dow Jones U.S. Food & Beverage (djusfb.x)
•• Dow Jones U.S. Healthcare (djushc.x)
•• Dow Jones U.S. Industrials (djusin.x)
•• Dow Jones U.S. Internet (djusns.x)
•• Dow Jones U.S. Iron & Steel (djusst.x)
•• Dow Jones U.S. Media (djusme.x)
•• Dow Jones U.S. Medical Equipment (djusam.x)
•• Dow Jones U.S. Oil & Gas (djusen.x)
•• Dow Jones U.S. Personal Products (djuscm.x)
•• Dow Jones U.S. Pharmaceuticals (djuspr.x)
•• Dow Jones U.S. Railroads (djusrr.x)
•• Dow Jones U.S. Real Estate(djusre.x)
•• Dow Jones U.S. Restaurants & Bars (djusru.x)
•• Dow Jones U.S. Retail (djusrt.x)
•• Dow Jones U.S. Semiconductor (djussc.x)
•• Dow Jones U.S. Software (djussw.x)
•• Dow Jones U.S. Specialty Retailers (djusrs.x)
•• Dow Jones U.S. Technology (djustc.x)
•• Dow Jones U.S. Telecommunications (djustl.x)
•• Dow Jones U.S. Travel & Leisure (djuscg.x)
•• Dow Jones U.S. Utilities (djusut.x)

The Platform
The Multicharts platform was used to conduct the research, 

run the tests and analyse the results. The choice fell on this 
platform as it is considered among the most complete and 
reliable among all those on the market. The use of an efficient 
and performing platform is of fundamental importance to 
perform a complete and reliable search.

Historical Data Feed
The history of data on all indices used in the search was 

provided by the iqfeed.net service.
The choice fell on this supplier of historical data, as it is 

considered one of the most reliable among all those on the 
market.

To carry out decent research, it is necessary to start from 
very good quality historical data; otherwise, you would risk 
having results distorted by reality and therefore be unreliable.
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Results

Fixed Size Strategy

Performance Analysis
Let’s start with the simulation of the strategy applying the 

variant of the Fixed Size. In this simulation, each size weighs 5% 
of the initial capital and therefore, each size is equal to $5,000. 
From the table below we can see the analysis of the trades made.

As you can see, 233 operations have been done, all long. 136 
transactions were closed for profit, and only 97 transactions 
were closed for loss. The percentage of closed operations in 
profit was 58%. A decidedly high value for a trend-following 
strategy! Also important is the ratio between the average of 
closed operations in profit and the average of closed operations 
in loss, which stands at 4.5. This means that for every euro lost 
on average in a losing trade, there is an average of €4. 5 earned 
for every trade closed for profit.

The balance between the values of Percent Profitable and 
Ratio Avg. Win Avg Loss is truly exceptional.

Table 3 presents the “Performance Summary.” The important 
data in this table are:

•• The return on initial capital of $100,000 was 220%, which 
equates to an average annual return of 12.55%.

•• Starting from a capital of $100,000, the capital really needed 
to perform the operations was only $25,800 (or almost 26% of 
the initial capital).

•• The return on capital actually required was 852%.
•• The maximum drawdown measured, also considering the 

operations still open, was 18.86% and was recorded during the 
“financial earthquakes” of 2010.

•• The maximum drawdown measured considering only closed 
positions was 11.7%.

•• The profit factor, i.e., the ratio between profits and losses 
obtained by the strategy, is equal to 6.34%.

•• The total yield obtained was 5.43 times the maximum 
drawdown sustained. In the light of these data, we can say 
that we are facing an excellent trend.

•• Following strategy, which is able not only to contain losses, 
but also to let the profits run.
Performance Ratio Analysis

Let’s now deal with the analysis of the Performance Ratios 
shown in the Table 4.

As you can see from the table, the strategy has an Upside 
Potential Ratio of 40.24 which represents a very positive value. 
The annualised Sharpe Ratio and the Sortino Ratio also showed 
positive values of 0.53 and 0.23 respectively.

Time Analysis
We now move on to the Time Analysis shown in Table 5.
The time period between the first and last trade was 17 years 

and 7 months. Of this time span, the actual period on the market 
was 16 years and 9 months, equal to 5% of the total time. The 
longest period in which we stayed flat was 5 months and 25 days. 
The day with the worst drawdown was February 7, 2010, while 
the day with the best run-up was May 10, 2018.

Equity Curve Detailed
Let’s take care of the visual aspect now. We move on to the 

analysis of the equity line shown in the Figure 6.
In the chart, you can see the trend of the equity line of the 

portfolio from the initial

Figure 6. Equity Curve Detailed of the Simulation

$100,000 up to the final $325,000. The red rectangles 
show the two major financial crises of 2000 and 2008. As we 
can see, during these extremely negative phases in which 
markets usually lose more than 50%, the strategy succeeds in 
significantly limiting losses.

The strength of the strategy is precisely in these bearish 
phases of the markets in which it succeeds in progressively 
reducing the exposure until it remains completely uninvested 
(flat) during the most acute final moments of the crises. 
Containing losses when markets halve their value is a great 
strength because it allows you to recover faster than previous 
highs, when markets start to rise again. The strategy succeeds 
in doing all this thanks to the sector rotation and the use of 
liquidity in the negative moments in the markets.

Drawdown Analysis
In Figure 7, we can analyze the drawdowns in detail.

Figure 7. Equity Curve Detailed With Drawdown of the 
Simulation

The biggest drawdowns were 3, and they all occurred during 
the crises of 2000 and 2008 and during the shocks of 2010. 
From 2012 onwards, all maximum drawdowns remained below 
10%. This is due both to a particularly prosperous period for 
the markets, but also to the fact that the percentage of total 
capital invested in each individual trade, since the size is fixed at 
$5,000, decreases as the accumulated capital increases.
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Table 2. Total Trade Analysis of the Strategy Simulation

Table 3. Performance Summary of the Strategy Simulation

Table 4. Performance Ratio of the Strategy Simulation

Table 5. Time Analysis of the Strategy Simulation
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Annual Rolling Period Analysis
Another interesting table is the one relating to the Annual 

Rolling Period Analysis, which is shown below.

Table 6. Annual Rolling Period Analysis of the Simulation

As can be seen from Table 6, applying the strategy from any 
year to date, no negative results would have been achieved.

The percentage of profitable trades always remains 
significantly above 50%, reaching over 60% in some cases. The 
same applies to Profit Factors, always above 4 until reaching 
a peak of 11 for departures in 2009 or 2012. Only in the case of 
startups in 2015 and 2018 would the results have been less than 
exciting with the percentages of profitable trade that fall below 
50% and profit factors that go below 4. In fact, starting in 2018 
would have been the only case in which the strategy would have 
led to negative returns (-1.36%).

To be fair, 1 year and 3 months is a too short a period of time 
to evaluate a long-term approach that takes at least 5 years to 
express itself at best.

Annual Returns and Drawdown Analysis
If you break down the performance year by year, you get the 

histogram shown in Figure 8.

Figure 8. Annual Return and Drawdown (%)

As can be seen from the graph, only 5 of the 19 years of 
operation have generated losses. In these 5 years, losses of less 
than 5% have been recorded three times and losses of between 
10% and 15% have been recorded two times. The remaining 14 
years have all produced positive returns. Of these 14 years, the 
best were 2003, with a performance of over 35%, and 2013, with 
a performance of over 25%.

Monte Carlo Analysis
Two Monte Carlo tests were conducted, both based on 

100,000 simulations. The first was conducted on 100% of trades 
made. The second was conducted on 95% of all trades done. You 
can see the results in Figures 9 and 10.

Figure 9. Montecarlo Analysis Based on 100,000 
Simulations and 100% of the Trades

Figure 10. Monte Carlo Analysis Based on 100,000 
Simulations and 95% of All Trades

As you can see from the graphs, the Monte Carlo simulations 
confirm the goodness of the strategy.

Sector-by-Sector Analysis
Let’s deepen the analysis by going into more detail. Table 7 

shows the results of the sector-by-sector strategy.
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Table 7. Sector-by-Sector Analysis

As can be seen from the table, even if we break down the 
operations by sector, no single sector has ever produced 
negative results in 19 years of operation.

For those who love statistics and data, there are two tables—
Tables 8 and 9—for learning more about the operation of each 
individual sector.

Table 8. Equity Curve Analysis

Table 9. Sector-by-Sector Ratio Analysis
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The sector on which the strategy worked best was the sector 
Dow Jones U.S. Internet (djusns.x), which produced a yield of 
24% compared to a Drawdown of 6.3%. The sector on which 
the strategy worked worst was the Dow Jones U.S. Telecom 
Equipment sector (djusct.x), which produced a yield of 3.9% 
compared to a drawdown of 3.9%.

Percentage Size Strategy

Performance Summary Analysis
What we just saw was the strategy applied using a fixed size 

for each operation of $5,000. Let’s now see the results obtained 
applying the strategy in the variant Percentage Size. Table 10 
shows the comparative results of the two simulations.

Table 10. Comparison Between Fixed Size Strategy and 
Variable Size Strategy

From the comparison, it is evident that by using a percentage 
rather than fixed measure, it is possible to obtain a double 
average annual yield compared to a close to

close drawdown practically identical. The profit factor is not 
subject to significant changes. There is a slight improvement 
in the Sharpe Ratio and Sortino Ratio. The capital required 
to execute the strategy with the size in percentage measure 
doubles, going from 25% of the initial capital for the fixed size 
strategy up to 53%.

Statistical Data
For the sake of completeness of information, the most 

relevant statistical data of the strategy with the size in 
percentage is shown in Tables 11 and 12.

Table 11. Performance Summary of Percentage Size Simulation

Table 12. Performance Ratios of Percentage Size Simulation

Figure 11. Equity Curve Detailed With Drawdown of 
Percentage Size Simulation

Table 13. Annual Rolling Period Analysis of Percentage 
Size Simulation
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Figure 12. Monte Carlo Analysis Based on 100,000 
Simulations and 95% of the All Trades

Figure 13. Monte Carlo Analysis Based on 100,000 
Simulations and 100% of All Trades

Comparison With the Benchmark
Let’s now make the long-awaited comparison against the stated 

benchmark that is the Dow Jones U.S. Total Market (Djus.x).
In Figure 14, it is possible to observe the trend of the djus.x 

index on a quarterly basis from 2000 until 2019.

Figure 14. Dow Jones U.S. Total Market in Quarter-by-
Quarter Timeframe

During this period, the index produced a yield of 107% 
compared to a maximum drawdown of 56% during the 2008 
crisis.

Table 14. Comparison Between djus.x, Fixed Size Strategy 
and Percentage Size Strategy

As we can see from the comparative table, both strategies 
(with fixed size and with size in percentage) have produced 
much higher yields in the face of risks more than halved. We 
can therefore say that a sector rotation supported by technical 
analysis tools allows for significantly better results than a 
simple strategy of buy & hold of the entire market.

This advantage was achieved through a sector rotation 
technique in favour of sectors that are on trend and by liquidity 
assistance when the market enters bearish phases.

Discussion

Comparison With the Best Actively Managed Funds
In this section, I want to make a comparison of the strategy 

against the best active fund present since 2000 to date.
To do this, I went to morningstar.com and did a search by 

selecting the following as parameters:

•• Equity Use Flex Cap
•• Retail Funds

Then I did a search to find the best active dividend 
accumulation fund and the best active dividend distribution 
fund with a history from May 2000 until March 2019. The 
results were these two funds:

•• PGIM Jennison U.S. All Cap Equity Fund USD I Accumulation
•• WIP Opportunistic Equity Fund A Distribution

Figures 15 and 16 show the price development of the two funds.

Figure 15. Pgim Jennison U.S. All Cap Fund From 2000 to 2019

Figure 16. Wip Opportunistic Equity A Fund From 2000 
to 2019
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Let’s now compare the two funds and the two strategies in 
Table 15.

Table 15. Comparison Between Fixed Size Strategy, 
Percentage Size Strategy, Pgim Fund, and Wip Fund

The following observations can be made from the analysis of 
the comparative table:

•• The strategy with the percentage size proves to be better than 
both funds. It has higher yields for lower risks.

•• The fixed-size strategy proves to be significantly less risky 
than both funds with a maximum drawdown of more than 
half that. The return side, on the other hand, proves to be 
higher than the Wip fund for the distribution of dividends, but 
lower than the Pgim fund for the accumulation of dividends. 
It must be said that the test of strategies was done on price 
indices that do not consider the reinvestment of dividends in 
their value, so probably the best comparison would be with 
the Wip fund to distribute dividends.

How to Use the Strategy in Reality

Introduction of the ETFs
What we have seen so far has been an analysis of the value 

of the sectoral indices that in reality cannot be bought on the 
market. I can’t go to market tomorrow and buy the Dow Jones 
U.S. Internet Index. So, after making sure that the strategy 
worked, as we saw a moment ago, I went to test it with tools that 
could really be bought on the market by anyone. To do this, I 
used the sectoral ETF (Exchange Traded Funds), i.e., those funds 
that passively replicate the trend of the sectoral indices.

The ETF used for the research were:

•• xlv: health care select sector spdr
•• xlk: technology select sector spdr
•• vgt: vanguard information technolog
•• xle: energy select sector spdr
•• xly: spdr consumer discret select
•• xlu: utilities select sector spdr
•• ibb: ishares nasdaq biotechnology
•• fdn: first trust dow jones internet
•• ita: i shares us aerospace & defense
•• ihi: ishares dow jones us medical d
•• kre: spdr s&p regional banking ETF
•• igv: ishares north american tech-software ETF
•• kbe: spdr s&p bank ETF
•• xop: spdr s&p oil & gas exploration
•• skyy: first trust cloud computin
•• hack: aftmg ise cyber security ETF
•• iyg: ishares dow jones us financial
•• vox: vanguard communication services ETF
•• soxx: ishares phlx semiconductor ETF
•• itb: i shares us home construction

•• ihf: ishares dow jones us healthcar
•• pho: powershares water resources portfolio
•• ige: ishares north american natural resources ETF
•• kie: spdr s&p insurance ETF
•• xhe: spdr s&p health care equipment
•• xhb: spdr s&p homebuilders
•• iyz: ishares u.s. telecommunications ETF
•• iyk: ishares dow jones us consumer
•• xrt: spdr s&p retail
•• ipay: aftmg ise mobile payments ETF
•• arkg: ark genomic revolution multi-s
•• fxg: first trust consumer staples a
•• finx: global x fintech ETF
•• ibuy: amplify online retail ETF
•• iai: ishares dow jones us broker-de
•• psp: invesco global listed priv
•• ring: ishares msci global gold miner
•• pzd: invesco cleantech
•• pkb: invesco dynamic building & construction
•• iak: ishares dow jones us insurance
•• xtl: spdr s&p telecom
•• pej: invesco dynamic leisure
•• pbj: invesco dynamic food & bev
•• pxq: invesco dynamic networking
•• pbs: invesco dynamic media
•• silj: aftmg ise junior silver
•• fill: ishares msci global energy pro
•• bbc: bioshares biotechnology clinic
•• pjp: invesco dynamic pharmaceut
•• blok: amplify transformational data sharing ETF

Methods and Criteria
The simulation was conducted according to the following 

parameters:

•• Initial capital $100,000
•• Relative strength measured against Dow Jones U.S. Total 

Market (djus.x)
•• Relative strength moving average 25 periods
•• Donchian channel 25 periods
•• Size single positions 5%
•• Commissions per trade: 0.5%
•• Start date: 01 January 2008
•• Date of end 01 March 2019

Commissions of 0.5% have been included to make the 
simulation as realistic as possible. The starting date of the 
simulation is January 1, 2009, because it is not possible to find 
enough ETF for previous starting dates.

Results
The obtained results are shown in the following tables and 

figures.
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Table 16. Performance Summary of ETF Simulation

Table 17. Performance Ratio Analysis of ETF Simulation

Figure 17. Equity Curve Detailed With Drawdown 
Analysis of ETF Simulation

Table 18. Annual Rolling Period Analysis of ETF Simulation

Table 19. Annual Period Analysis of ETF Simulation

As can be seen from the results, the performance achieved, 
net of commissions, was in line with previous tests. In some 
ways, they were even better.

Comparison With Theoretical Strategies
Compared to the simulation of the strategy with size in 

percentage, these are the main differences:

•• Profit factor decreased from 6.18 to 4.85.
•• Yield increased from 191% to 280%.
•• Maximum drawdown increased from 26.5% to 33.1%.
•• Drawdown close to close increased from 11.8% to 16.1%.
•• Average annual yield increased from 24% to 24.9%.

Considering the commissional impact present in the simulation 
with the ETF that instead is not present in the one with the 
indices, we can affirm that the results of the simulation with ETF 
do not differ too much from those made with the indices.

Comparing the results of the simulation with the ETF with 
the trend of the benchmark (Dow Jones U.S. Total Market). 
Figure 18 shows the Dow Jones U.S. Total Market from 2008 to 
the present day.

Figure 18. Dow Jones U.S. Total Market Price Action From 
2008 to 2019 Based on Monthly Timeframe
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Comparison With the Benchmark
Table 20 shows the results of the comparison from 2008 to 2019.

Table 20. Comparison Between ETF Simulation and 
djus.x Index Taken as a Benchmark

The results are very much in favour of the strategy applied to 
the ETFs. In fact, it can be seen that there has been a doubling 
of yields in the face of a significant reduction in losses. All this 
considering that 57.6% of the initial capital would have been 
sufficient to implement the strategy and thus would have 
allowed liquidity to be reinvested in other strategies or other 
asset classes.

Comparison With the Best Actively Managed Fund
And finally, we complete the research with a comparison 

against the best equity fund present since January 1, 2008, until 
today. We are talking about the Franklin U.S. Opportunities W 
accumulation of which we can see in Figure 19.

Figure 19. Franklin U.S. Opportunities W Fund From 
2008 to 2019

Let’s now see the comparison in the usual comparative table.

Table 21. Comparison Between ETF Simulation and 
Franklin U.S. Opportunity W Fund Taken as Benchmark

As we can see, the results are quite similar, both in terms of 
the final performance and the maximum drawdown sustained. 
The fund has achieved a slightly higher yield in the face of 
a substantial increase in risk. We should bear in mind that 
this fund used for comparison is the one that has offered the 
highest return since 2008, out of a total of 91 similar funds for 
management  style.

The Current Portfolio
As of the time this was written (March 6, 2019), the strategy 

has the following portfolio:

Table 22. Current Portfolio Based on the Strategy With 
Percentage Size of 5%

Beyond the U.S. Stock Market
In conclusion, the strategy has been tested with the same 

parameters in other markets as well. Specifically:

•• Global Sectoral versus Global Equity
•• European Sectoral vs. European Equity
•• Sectoral Italian vs. Equity Italian
•• American stock picking against S&P 500

The simulations made on these markets are not the subject 
of this research, so I will not go into the merits, but have all 
produced better results than the respective benchmarks.

Conclusion
The research carried out has achieved the two intended 

objectives:

•• Create a strategy that beats the American market and does 
what more than 97% of active funds fail to do.

•• Create a strategy that can contain the losses of the stock 
market that are the main cause of worry for investors and 
what keeps them away from this type of investment.
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The results obtained by the strategy have been more than 
satisfactory, as:

•• It has achieved higher returns than the stock market over a 
time horizon of almost 20 years.

•• It contained losses compared to the American stock market, 
especially during the two financial crises of 2000 and 2008.

•• It did better than the best active fund on the American stock 
market in terms of both risk and return.

•• It has enabled better results to be achieved in terms of both 
risk and return by using less capital than the original capital.

•• It has produced results in line with expectations even with a 
simulation with ETF net of commissions.

This strategy can be set up and implemented as of tomorrow by:

•• Small private investors who want to invest their capital 
independently, following an approach that can produce higher 
returns and lower risks than the American stock market.

•• Financial advisors who want to use a long-term investment 
strategy to invest the capital of their clients.

•• Active fund managers who want to have a management style 
that really can beat the market.

•• Companies that produce ETFs that want to create an ETF 
composed of ETFs (today we are beginning to see several) that 
exploit a mechanical methodology are able to do better than 
the market.

I don’t know if these professional and private figures will one 
day use the strategy presented in this paper, but I’m sure of one 
thing: I started applying it in real life with my capital today!

شريكك الأمثل للاستثمار في البورصة

العربى الافريقى الدولى لتداول الأوراق المالية
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Abstract
The 27.02 Day Cycle combines the dominant role of the 

number Pi (3.14 ...) with the anomalistic orbital period of 
the earth (365.2596 days).1 The significance of the 27.02 Day 
Cycle has been verified on the basis of the highly capitalized 
and broadly diversified S&P-500-Index. As the investigation 
shows, a synchronicity4 between the 27.02 Day Cycle and the 
price development on the financial markets seems to exist. 
It is about the phenomenon of temporally correlated events 
that are not linked by a causal relationship but are perceived 
to be interconnected or interrelated. The observations made 
and the theory of synchronicity were the basis for further 
investigations and the development of the 27.02 Day Cycle 
Model. For the determination of the calendar calibration, a 
market correction with more then -5% must occasionally 
coincide with the 27.02 Day Cycle change. The first calibration 
point was set on 16 February 2004. The model is based on three 
basic algorithms: 27.02 Day Cycle Core, 27.02 Day Cycle Core 
Target, and 27.02 Day Cycle Core Error. Constructive corrections 
allow, after the finalization of a 27.02 Day Cycle Core formation, 
the determination of the Cycle Time Diameter. On this basis, 
the total cycle can then be calculated using the circular formula 
D x Pi. This algorithm can be used during the boom phase to 
determine the time forecast for new significant highs. The 
transition from the boom phase to the bust phase is usually 
indicated by a 27.02 Day Cycle Error. Since the calibration of 
the 27.02 Day Cycle with the calendar in 2004, there has been 
no recalibration to date. The 27.02 Day Cycle is to a certain 
extent only the carrier frequency for the development of 
emancipated cycles without a fixed time corset. The presented 
investigations led to the question of whether a natural 27.02 Day 
Cycle exists in nature. The significance of the 27.02 Day Cycle 
becomes clear when investigating the solar magnetic field and 
thus, with the character of the solar dynamo. As the results of 
astrophysics research show, the synodic solar rotation period 
plays a dominant role with 27.02 (+/- 0.02) days (see References). 
Surprisingly, the product of the solar rotation period and the 
anomalistic period of the earth brings to light the Pi formula. 
The result 3.141546 ... is consistent with the natural constant 
Pi = 3.141592 ... up to and including the fourth digit after the 
decimal point. There is also a mathematical relation between 
the Fine Structure Constant 1375 and the 27.02 Day Cycle. From 
the reciprocal of 27.02 in the square, the FSC can be derived 
theoretically. The presented research also opens up a series of 
interesting questions for mathematics and astrophysics.

Introduction

Background
The search for natural cyclical patterns, which may have an 

impact on the financial markets, has long been a fascination 
for analysts. Especially interesting is the moon with its moon 
phases. Therefore, it is no wonder that there are already 
countless studies and publications on this phenomenon.

This was the motivation to look for more patterns. For this 
purpose, formulas consisting of mathematical constants and 
natural cycles were designed and tested. In this experiment 
was the following formula, which links the number Pi with the 
anomalistic orbit period1 of the earth.

The significance of this formula has been verified on the basis 
of the highly capitalized and broadly diversified S&P 500 Index. 
The calendar calibration3 of the 27.02 Day Cycle took place on 
the basis of dominant price highs, which coincided exactly with 
the 27.02 Day Cycle. Important high points often fall on the last 
day of the cycle. As the investigation shows, a synchronicity4 
between the 27.02 Day Cycle and the price development on the 
financial markets seems to exist. Of particular importance is in 
each case the last and first cycle day—the pulse beat of the 27.02 
DC. Figure 1a – 1e shows typical examples.

Figure 1a. S&P 500 – History 2007

27.02 Day Cycle Model
By  Kersten Wöhrle, MFTA 

Kersten Wöhrle, MFTA

kerstenwoehrle@icloud.com

+49 151 2700 3178

IFTA JOURNAL      2020 EDITION

IFTA.ORG PAGE 19



Figure 1b. S&P 500 – History 2009

Figure 1c. S&P 500 – History 2011

Figure 1d. S&P 500 – History 2016

Figure 1e. S&P 500 – Part of 2018–2019

The following research results focus solely on the highly 
capitalized and diversified S&P 500.

The Phenomenon of Synchronicity
Synchronicity4 describes temporally coincident occurrences 

of acausal events. The phenomenon of synchronicity was 
described by quantum physicist and Nobel laureate Wolfgang 
Pauli and depth psychologist C.G. Jung and intensively 
researched. See more under the DISCUSSION section.

Methodology

27.02 Day Cycle Model
The observations made and the theory of synchronicity were 

the basis for further investigations and the development of the 
27.02 Day Cycle Model.

27.02 Day Cycle—Calendar Calibration
The calibration of the 27.02 DC3 with the calendar was made on 

the basis of the data collected between 2004 and 2007. The first 
calibration point was set on 16 February 2004. For the further 
date calculation, a cycle duration of 27.020793 days was used 
according to the algorithm. To confirm the correctness of the 
calibration over and over again, occasionally larger corrections 
must be observed with the cycle change. Table 1 shows only the 
corrections with more than -5%, which have arisen with the 
cycle change. Until today, no recalibration took place.

Table 1. 27.02 Day Cycle – Calender Calibration With S&P 500

27.02 Day Cycle Candle
The basis for all further considerations is the 27.02 Day Cycle 

calibrated with the calendar. To simplify the explanation, the 
price development of a 27.02 Day Cycle is shown as a candle (see 
Figure 2).
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Figure 2. 27.02 Day Cycle Candle

27.02 Day Cycle Core
The foundation of the 27.02 Day Cycle Model consists of the 

27.02 DC Core. The formation starts with the beginning of a 
correction (Time A) and is completed when the closing price 
at Time B the first time is greater than at Time A. The time in 
between is the Time Diameter D. Figure 3 describes Model 
Algorithm 1.

Figure 3. Model Algorithm 1

27.02 Day Cycle Core Target
After completion of the 27.02 DC Core the total cycle and thus 

the 27.02 DC Core Target can be calculated with the help of the 
formula: D x Pi. The calculated date T Final is between two 27.02 
DC Endpoints. The cycle high point is usually reached by -T Final 
or (+ T Final).3 Figure 4 describes Model Algorithm 2.

Figure 4. Model Algorithm 2

27.02 Day Cycle Core Error
The 27.02 DCM not only provides the time forecast for 

significant highs in the boom phase but also typically triggers a 
signal in time before the start of a bust phase. The basis for this 
is the 27.02 DC Core Error. Figure 5 shows the principle of Model 
Algorithm 3.

Figure 5.  Model Algorithm 3

Results

Complete Cycles From Core Start to Target-Sequence
The following two practical examples reflect model algorithm 

1, 27.02 Day Cycle Core, and 2, 27.02 Day Cycle Core Target, 
described earlier. The example below shows and explains Cycle 
0506. The origin and the development until the end of the cycle 
are shown in Figures 6a and 6b.

Figure 6a.  Cycle 0506 – Core History

Figure 6b.  Cycle 0506 – From Core Start to Target-Sequence
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Each cycle will be named after the month and year of the 
27.02 DC Core opening. For example, the chart shows the 
development of Cycle 0506. Point A is May 6, 2006, and the 
first 27.02 DC day. This was the beginning of the correction and 
thus, the starting point for the 27.02 DC Core. After six 27.02 
DC, the 27.02 DC Core was completed on October 13, 2006. Now 
the premise B > A was fulfilled. The time between point A and B 
corresponds to the Time Diameter D.
After completing the 27.02 DC Core, the total cycle size up to 
the target sequence can now be calculated using the formula D 
x Pi. The high point of Cycle 0506 was reached with + T Final on 
October 1, 2007. Cycle 0506 was the last intact cycle before the 
onset of the financial crisis.

The second example ( Figures 7a and 7b) shows the origin and 
development Cycle 0109.

Figure 7a.  Cycle 0109 – Core History

Figure 7b.  Cycle 0109 – From Core Start to Target-Sequence

The successful finalization of the core formation of Cycle 
0109 was also the signal for the end of the bust phase and the 
beginning of a new bull market.

S&P 500 Statistics – All Complete Cycles Since 2003
Since the beginning of the investigations in 2003, a total of 

23 Cycle patterns have been observed in the S&P 500 Index to 
date—from the 27.02 DC Core start to the cycle completion by 
the 27.02 DC Core Target. The data available now confirms the 
high correlation between the completion of 27.02 DC Core and 
the achievement of significant highs by the 27.02 DC Core Target 
Sequence.

Table 2 gives an overview and statistics for all cycles from 
core start to target-sequence. Since 2003, 23 cycles have been 
observed in the S&P 500.0

Cycle Error When Changing From Boom Phase to 
Bust Phase

The following two practical examples reflect the model 
algorithm 3, 27.02 Day Cycle Core Error, described earlier. 
Figures 8a and 8b (overview and detail view) show the outbreak 
of the last financial crisis from the perspective of the 27.02 Day 
Cycle Model.

Figure 8a.  27.02 Day Cycle Error in 2007 – Overview

Figure 8b.  27.02 Day Cycle Error in 2007 – Detail View

Figures 9a and 9b (overview and detail view) show the first of 
two 27.02 Day Cycle Errors in 2015.

Figure 9a.  27.02 Day Cycle Error in 2015 – Overview
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Figure 9b.  27.2 Day Cycle Error in 2015 – Detail View

In 2015, the boom phase was about to end. This can also be 
seen in the development of U.S. junk bonds (HYG Index). From 
mid-2015 to early 2016, the share price fell sharply again. In this 
market phase, a 27.02 DC Core Error was triggered twice. Both 
correction waves were relatively moderate, with minus 10.8% 
and 12.5%, respectively. The intervention of monetary policy 
prevented a big crash in 2015.

Since 2003, three errors have occurred—Table 3 shows the 
details.

Table 3.  27.02 Day Cycle Core Error Since 2003

Current Status and Outlook
Due to great interest, the current status since 2017 is 

published on the VTAD homepage with every 27.02 Day Cycle 
completion: www.vtad.de.

This makes the 27.02 Day Cycle Model forecast transparent 
to all interested parties and comparable to the actual 
development.

The course of the S&P 500 Index is shown in 27.02 Day Cycle 
mode. Figure 10 shows the development from 2014 until the 
handover date of this paper.

Figure 10.  S&P 500 in 27.02 Day Cycle Mode – Status as 
of February 2019

Table 2.  S&P 500 Statistics – All Complete Cycles Since 2003
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Discussion

The Mystery of Pi, Also With a View of Our Solar 
System

The presented investigations led to the question of whether 
a natural 27.02 Day Cycle exists in nature. The interest was 
focused on the sun. At the latest since the discovery of the 
sunspots, it is known that the sun also turns around its own 
axis (sun rotation period). The observed rotation period varies 
between the solar equator and poles from 24 to over 30 days. 
Rotation is affected by various factors (e.g., surface structure, 
sunspot activity). The significance of the 27.02 Day Cycle 
becomes clear when investigating the solar magnetic field and 
thus, with the character of the solar dynamo. As the results of 
astrophysics research show, the synodic solar rotation period 
plays a dominant role with 27.02 (+/- 0.02) days (see References).

The product of the solar rotation period and the anomalistic 
period of the earth1 brings the following formula to light:

The result 3.141546 ... is consistent with the natural constant 
Pi = 3.141592 ... up to and including the fourth digit after the 
decimal point!

The Cosmic Number 137 and the 27.02 Day Cycle
The fine-structure constant,5 so to speak, unites three 

fundamental physical theories: electron theory, quantum theory 
and relativity theory. It’s just a number, because the dimensions 
cancel each other out.	

e Charge of the electron		
h Planck’s constant
c Speed of Light

From this symbol bundle, the number 0.00729 derives. For 
better handling, the reciprocal value 137 is used. In this matter, 
a new and interesting mathematical finding6 is the relationship 
between the fine-structure constant 137, Pi, and the anomalistic 
orbital period1 of the earth.

Table 4 gives an overview of all theoretical values for fine-
structure constant.7

Table 4.  FSC Values

The number 137 is one of the great last secrets of physics. This 
fact has already led to noteworthy quotations among leading 
scientists.

Quantum physicist and Nobel laureate Wolfgang Pauli:
“If God allowed me to ask a question, it would be: why the 

number 137?”
Physicist Laurence Eaves, professor at the University of 

Nottingham:
“I think the number 137 would be the one you’d signal to the 

aliens to indicate that we have some measure of mastery over 
our planet and understand quantum mechanics. The aliens 
would know the number as well, especially if they developed 
advanced sciences.”

The Phenomenon of Synchronicity
Synchronicity describes temporally coincident occurrences of 

acausal events. The phenomenon of synchronicity was described 
by quantum physicist and Nobel laureate Wolfgang Pauli and 
depth psychologist C.G. Jung and intensively researched (see 
References). In their collaboration, they sought explanations to 
reveal hidden symmetries or an inner harmony of nature. The 
Pauli principle reveals such symmetry in the atomic world. It 
says that, for example, in an atom, no two electrons may occupy 
the exact same state. The exclusion principle or Pauli principle 
is not based on any forces acting between the particles, but 
rather an excellent example of an “acausal” linkage. Or to put 
it more generally: It is about the phenomenon of temporally 
correlated events that are not linked by a causal relationship 
but are perceived to be interconnected or interrelated. Figure 11 
illustrates the Jung–Pauli concept.

Figure 11.  Jung–Pauli Concept

IFTA JOURNAL      2020 EDITION

PAGE 24 IFTA.ORG



Summary
The research presented in this paper leads to a whole bundle 

of new questions. As could be shown, there is a relation of the 
27.02 Day Cycle to the anomalistic period of the earth, the 
natural constant Pi, and the fine-structure constant 137. In 
addition, we have seen that exists in our central star, the Sun, 
a natural 27.02 day cycle. Therefore, it is almost no surprise 
that the 27.02 Day Cycle has to leave its mark on human and 
collective behavior. This is likely to be the most pronounced, 
where many people are acting together in a large and balanced 
market.

High points in the S&P 500 serve the 27.02 Day Cycle as 
bases for anchorage with the calendar. To what extent the 
phenomenon of synchronicity plays a role, or rather only the 
statistical probability finds its expression, remains open. Using 
computer-aided models, current research finds more and more 
evidence of the results of Wolfgang Pauli and C.G. Jung regarding 
the phenomenon of synchronicity. Crucial here, however, is 
that the 27.02 Day Cycle is to a certain extent only the carrier 
frequency for the development of emancipated cycles.

Conclusion

27.02 Day Cycle Model
The 27.02 Day Cycle combines the dominant role of the 

number Pi with the anomalistic orbital period of the earth with 
365.2596 days.1

The 27.02 Day Cycle is the basic cycle for cycles with time of 
origin and period develop emancipated—a cycle without a fixed 
time corset.

The 27.02 Day Cycle Model is a market-phase indicator that 
distinguishes between two states: boom phase or bust phase.

Constructive corrections allow, after the finalization of a core 
formation (27.02 DC Core), the time forecast for new major tops.

The transition from the boom to the bust phase is usually 
indicated by a 27.02 Day Cycle Error.

During the bust phase, no 27.02 Day Cycle Core will be 
formed—lower highs are followed by new lows.

Since the calibration of the 27.02 Day Cycle with the calendar 
in 2004, there has been no recalibration to date.

Future Work
To allow a further assessment of the cycle model, the 

evaluation on the basis of further key indices is required in the 
next few years.
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Abstract
(Ir)reversibility is a characteristic of time series that, 

despite its close relationship with trends, is currently not 
captured by any of the common technical indicators. In this 
article, an indicator that is able to do so is constructed, based 
on a reflection of how irreversibility should be (re)defined in 
trading—the IREV. It calculates the oriented divergence between 
the probability distributions of the market price read forwards 
and backwards based on ordinal permutations (e.g., (1,2,3) 
or (3,2,1) for an increasing or decreasing price, respectively). 
The IREV is qualitatively discussed for an instructive price 
development and quantitatively tested for the DAX members 
in 2018. The results indicate that it gives precise signals and 
obtains significantly better average cumulated returns than the 
MACD, as an example for a common indicator.

Introduction
Technical indicators are used to capture different aspects 

of a given historical price development to forecast its future 
continuation. Usually, one indicator covers mainly one such 
aspect, and dependent on which aspect this is, indicators can be 
classified into several categories. A common, somewhat detailed 
such categorization is presented in Table 1.

The technical analysis of price developments is, of course, 
closely related to academic time series analysis, as each 
price development is a time series. The aspects covered 
by the different indicator categories are therefore usually 
reflected by the concepts discussed in the latter domain, if by 
another name (column 3). However, in that domain, further 
important concepts exist that so far have not been covered 
by corresponding indicators, often because they have been 
developed in a completely different discipline than financial 
analysis. Such concepts can serve technical analysis with 
additional novel information.

One such concept, primarily analyzed in physics, is 
reversibility. Simply put, it describes changes in the state of the 
object represented by the time series that could always revert 
without the object (or its environment) experiencing a permanent 
change (loosely based on [3], p. 59). Other changes in state are 
called irreversible.

By this definition, one can intuitively grasp the value that the 
consideration of irreversibility could add to current technical 
analysis: What is a trend other than an (until further events) 
irreversible change in the state of the asset? This means that 
indicators of irreversibility should carry information on trends, 
if indirectly. As they are based on price dynamics (i.e., toing and 
froing) instead of changes in the mean price, they do not belong 
to the category of trend indicators but give standalone, so far 
unutilized information in the above sense.

In this article, a first member to the category of irreversibility 
indicators is developed based on recent research on time 
series, the IREV. Due to its particular calculation, it gives not 
only information on the current trend but also on the current 
momentum.

Construction of the IREV

Definition of irreversibility in technical analysis
To construct an indicator for the irreversibility of a price 

development, at first a formal definition of this concept is 
needed. As a basis, the inverse definition of reversibility 
as used in time series analysis can be considered. There, a 
stochastic process is called reversible if it produces the series 
{xt+1,…,xt+n} at all points in time t and for any length n with the 
same probability as the series {xt–1,…,xt–n}; if X is stationary, 
this probability is identical to the one of the reverse series 
{xt+n,…,xt+1} ([4]).

For technical analysis, however, this strict definition cannot 

The Irreversibility Indicator IREV
By Dr. Patrick Winter

Table 1. Categories of Technical Indicators (loosely based on [1, 2])

Input Category Related concepts of time series analysis Aspect covered Examples
Only price Trend Expectation,
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Change of mean Moving Average (MA),
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Spread around mean Bollinger Bands (BB),
Average True Range (ATR)

Momentum Auto-Regressivity Influence of previous values Relative Strength Index (RSI),
Stochastic Oscillator

Additional
data

Volume Reliability Substance of changes (investors) Ease Of Movement (EMV),
On-Balance Volume (OBV)

Market Reliability Substance of changes (firms) Advance-Decline-Line (ADL),
McClellan Oscillator
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be directly employed. This has five reasons, which necessitate 
five corresponding adaptations:

1.	 Reversibility in the above definition is a qualitative concept, 
meaning that X is either reversible or not (i.e., irreversible), 
but we are rather interested in the degree of irreversibility—
that is, we need a quantitative concept.

2.	 The above definition is concerned with X as a whole, but 
we do not (only) want to know whether or how much a 
price development is irreversible from start to end—since 
that would give us only a single piece of information—but 
to analyze certain windows and to investigate if and how 
irreversibility changes in their progress.

3.	 Correspondingly, we do not need to assume that the above 
property holds for series of any length n but choose a 
certain value for n for all windows.

4.	 Also—and this is the most important adaptation—we 
neither require that the above property holds for all points 
in time t nor stationarity, but we still want to compare the 
probability of the series {xt+1,…,xt+n} with that of its reverse 
{xt+n,…,xt+1} for each t.

5.	 This is not possible, however, as we do not know X and, thus, 
cannot predict its further development at t. Therefore, 
we do not look into the future but rather into the past and 
compare {xt–n+1,…,xt} with {xt,…,xt–n+1} instead of the above-
mentioned series (the former are obtained by replacing t 
with t–n in the latter).

Summarizing, the concept of irreversibility is defined for 
technical analysis as follows: A price development is the more 
irreversible at a point in time t with regard to a window of length n 
(period), the greater the divergence is between the (future-projected) 
probability distributions 𝒫→{xt–n+1,…,xt} and  𝒫←{xt,… ,xt–n+1}.

Figure 1 illustrates this definition. Here, at t=8 a price 
development of length n=6, {99, 98, 101, 100, 101, 103} (red), is 
compared to its (fictitious) reverse, i.e., {103, 101, 100, 101, 98, 
99} (blue). The divergence of the corresponding probability 
distributions in t gives the irreversibility (as a side note, the 
exact probabilities are irrelevant for our purposes).

Figure 1. Illustration of the Presented Definition of 
Irreversibility

Discretization of the price development
Unfortunately, the obtained definition of irreversibility 

cannot be operationalized so far because neither the forward 
probability distribution 𝒫→ nor its backward counterpart 𝒫← 

is known; thus, these distributions have to be estimated by the 
given data first.

Market prices represent continuous data, as they can take 
not only a few distinct values but virtually infinitely many 
in-between. The estimation of such distributions is difficult; 
it would require advanced concepts such as kernel density 
estimation (see, e.g., [5]), with the efforts exceeding the 
benefits. In such situations, one usually decides to discretize 
the data before their analysis, that is to map each data point 
to one of only a few groups. A variety of methods exist for 
this purpose; research on reversibility has often employed 
clustering algorithms or approaches based on graph theory 
(e.g., [6]).

However, we choose another method, which has been 
introduced in this kind of research just recently ([7, 8]) and can 
thus be regarded state-of-the-art: ordinal permutations ([9]). 
An ordinal permutation of dimension is an array (i.e., a vector) 
of the numbers 1 to d that reflects the order of a sequence of 
numbers of length d, where represents the lowest number and 
the highest. For the simplest case of d = 2 (d = 1 would be trivial) 
and a sequence x1,x2 of this length, there logically exist only two 
such permutations, namely (1,2) if x1 < x2 and (2,1) if x1 > x2 (ties 
as for x1 = x2 can be resolved randomly). For d =3, there already 
exist six permutations (these are illustrated in Figure 2), for 
an arbitrary value of d there are d! = d (d – 1)....1. One would 
generally prefer a higher value for d in order to capture as much 
information as possible; however, as we will see later on, this 
choice is strongly limited by a quickly increasing necessary 
minimum value of n.

Figure 2. The Six Ordinal Permutations for Dimension d=3

The method of ordinal permutations offers a range of 
advantages; these are nicely pointed out by Zanin et al. ([8], p. 
2): First, only one parameter has to be chosen, with the choice, 
as mentioned, being strongly restricted at that. Second, it 
can be applied locally (i.e., it allows the analysis of temporary 
fluctuations). Third, it does not depend on scaling. Fourth, it 
converges more “quickly” (that is, with shorter time series) 
than, for example, graph-based methods. In technical analysis, 
there also exists a fifth advantage, which should be explicated 
here: A series of permutations, as we will analyze below, 
strongly reminds us of formation analysis. The famous “Head 
and Shoulders” pattern, for example, could be represented by 
the (reversible!) permutation series {(1,2,3), (2,13), (3,1,2), (3,2,1)} 
(see again Figure 2). This relationship surely would deserve 
closer inspection, but this is out of the present work’s scope.

Discretizing the price development (or, more precisely, its 
current window) by ordinal permutations is very simple. To 
do so, the window is just partitioned into several overlapping 
sections of length d – there always exist exactly

m = n – (d – 1) (1)

of these –, which then are replaced by the corresponding 
permutation. Let us consider again the red forward movement 
{99, 98, 101, 100, 101, 103} of Figure 1 and choose d=2 for 
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illustration. 99 is greater than 98, so the discretized series 
starts with permutation (2,1). Then, 98 has to be compared to 
101, which leads to permutation (1,2), and so on. The resulting 
permutation series is {(2,1), (1,2), (2,1), (1,2), (1,2)} of length 
m=6-(2-1)=5. To obtain its counterpart for the blue backward 
movement, it simply has to be read backwards.

It is noteworthy that by the application of ordinal 
permutations, levels in the price development disappear (e.g., 
{98, 101} and {101, 103} are both mapped to (1,2)) so that the 
permutation series is much closer to being stationary than the 
price series.

Estimation of the probability distributions
After discretization, it principally is simple to estimate the 

probability distributions 𝒫→ and 𝒫←. These now are based on 
the permutation series rather than the price series, so they can 
be considered multinomial distributions of order d!(as there are 
this many possible results), and all that remains is to determine 
the respective result probabilities.

The obvious approach to estimate these would be to use 
the corresponding relative frequencies m

k : When in the above 
example the permutation (1,2) appears k=3 times in the forward 
movement of m=5 permutations, 53= 60% looks like a reasonable 
estimation of its probability. However, let us consider another 
example window in which occurs a pure downward movement, 
i.e., the permutation series [(2,1), (2,1), (2,1), (2,1), (2,1)]. (1,2) 
would then be assigned a probability of 0% by the relative-
frequency method, but one cannot reasonably assume that a 
permutation has been factually impossible just because it did 
not appear. Due to this (and a few other problems), a better 
estimator is needed.

It has been shown that  is such a better estimator for 
d=2 (i.e., a binomial distribution), if this, strictly speaking, is 
true only for intervals ([10]). The idea behind it can, somewhat 
heuristically, be generalized to other values of d, too:

4 

analysis of temporary fluctuations. Third, it does not depend on scaling. Fourth, it converges 
more “quickly” (that is, with shorter time series) than, e.g., graph-based methods. In technical 
analysis, there also exists a fifth advantage, which should be explicated here: A series of 
permutations, as we will analyze it below, strongly reminds of formation analysis. The 
famous “Head and Shoulders” pattern, for example, could be represented by the (reversible!) 
permutation series {(1,2,3), (2,13), (3,1,2), (3,2,1)} (see again Figure 2). This relationship 
surely would deserve closer inspection, but this is out of the present work’s scope. 

Discretizing the price development (or, more precisely, its current window) by ordinal 
permutations is very simple. To do so, the window is just partitioned into several overlapping 
sections of length 𝑑𝑑 – there always exist exactly 

𝑚𝑚 = 𝑛𝑛 − 𝑑𝑑 − 1  (1) 
of these –, which than are replaced by the corresponding permutation. Let us consider again 
the red forward movement {99, 98, 101, 100, 101, 103} of Figure 1 and choose 𝑑𝑑 = 2 for 
illustration. 99 is greater than 98, so the discretized series starts with permutation (2,1). Then, 
98 has to be compared to 101, which leads to permutation (1,2), and so on. The resulting 
permutation series is {(2,1), (1,2), (2,1), (1,2), (1,2)} of length 𝑚𝑚 = 6 − 2 − 1 = 5. To 
obtain its counterpart for the blue backward movement, it simply has to be read backwards. 

It is noteworthy that by the application of ordinal permutations, levels in the price 
development disappear (e.g., {98, 101} and {101, 103} are both mapped to (1,2)), so that the 
permutation series is much closer to being stationary than the price series. 

2.3. Estimation of the probability distributions 

After discretization, it principally is simple to estimate the probability distributions 𝒫𝒫→ and 
𝒫𝒫←. These now are based on the permutation series rather than the price series, so they can be 
considered multinomial distributions of order 𝑑𝑑! (as there are this many possible results), and 
all that remains is to determine the respective result probabilities. 

The obvious approach to estimate these would be to use the corresponding relative 
frequencies 𝑘𝑘 𝑚𝑚: When in the above example the permutation (1,2) appears 𝑘𝑘 = 3 times in 
the forward movement of 𝑚𝑚 = 5 permutations, 3 5 = 60% looks like a reasonable 
estimation of its probability. However, let us consider another example window in which 
occurs a pure downward movement, i.e. the permutation series {(2,1), (2,1), (2,1), (2,1), 
(2,1)}. (1,2) would then be assigned a probability of 0% by the relative-frequency method, but 
one cannot reasonably assume that a permutation has been factually impossible just because it 
did not appear. Due to this (and a few other problems), a better estimator is needed. 

It has been shown that 𝑘𝑘 + 2 𝑚𝑚 + 4  is such a better estimator for 𝑑𝑑 = 2 (i.e. a binomial 
distribution), if this, strictly speaking, is true only for intervals ([10]). The idea behind it can, 
somewhat heuristically, be generalized to other values of 𝑑𝑑, too: 

𝒫𝒫 →;← 𝑦𝑦 =
𝑘𝑘I

→;← + 2
𝑚𝑚 + 2 ⋅ 𝑑𝑑!

 (2) 

for each permutation 𝑦𝑦, where 𝑘𝑘I→ bzw. 𝑘𝑘I← again count the absolute frequency of 𝑦𝑦 among the 
𝑚𝑚 permutations of the forward and the backward series, respectively. For the above example, 
we now have 𝒫𝒫→ 1,2 = 3 + 2 5 + 4 = 5 9 and 𝒫𝒫→ 2,1 = 1 − 5 9 = 4 9; for 
𝒫𝒫← it is the other way round. Note that the difference between 5/9 and 3/5 is rather small. 

(2)

for each permutation y, where  bzw.  again count the 
absolute frequency of y among the m permutations of the 
forward and the backward series, respectively. For the above 
example, we now have 𝒫→ ((1,2)) = (3+2)/(5+4) = 5/9 and  
𝒫→ ((2,1)) = 1 – 5/9 = 4/9 ; for  𝒫 ← it is the other way around. Note 
that the difference between 5/9 and 3/5 is rather small.

As we now have obtained a practicable method for estimating 
𝒫→  and  𝒫← dependent on d (and n), the choice of this parameter 
should be commented. A higher choice overproportionally 
increases the number of probabilities that have to be estimated 
(d!–1; the last probability is then obtained by summing up to 
1) and decreases the number of data points available for this 
purpose (n–(d–1)). Thus, high values of d, which would be 
preferable as mentioned earlier, require a large n; n≥(d+1)([8]) 
can be seen as a rule of thumb. This shows why in practice, only 
d=2 (n≥6), d=3 (n≥24), and d=4 (n≥120) are meaningful. These 
values n for can be interpreted as short-term, mid-term, and 
long-term analyses, respectively, so that there is clear advice on 
which d to choose for each term.

Calculation of the divergence
Having estimated 𝒫→ and 𝒫←, we can now quantify their 

difference. As measure for such a difference, one usually 
employs the Kullback-Leibler divergence KLD, which for two 
arbitrary probability distributions 𝒫 1 and 𝒫 2 is defined as

5 

As we now have obtained a practicable method for estimating 𝒫𝒫→ and 𝒫𝒫← dependent on 𝑑𝑑 
(and 𝑛𝑛), the choice of this parameter should be commented. A higher choice 
overproportionally increases the number of probabilities that have to be estimated (𝑑𝑑! − 1; the 
last probability is then obtained by summing up to 1) and decreases the number of data points 
available for this purpose (𝑛𝑛 − 𝑑𝑑 − 1 ). Thus, high values of 𝑑𝑑, which would be preferable 
as mentioned earlier, require a large 𝑛𝑛; 𝑛𝑛 ≥ 𝑑𝑑 + 1 ! ([8]) can be seen as a rule of thumb. 
This shows why in practice, only 𝑑𝑑 = 2 (𝑛𝑛 ≥ 6), 𝑑𝑑 = 3 (𝑛𝑛 ≥ 24), and 𝑑𝑑 = 4 (𝑛𝑛 ≥ 120) are 
meaningful. These values for 𝑛𝑛 can be interpreted as short-term, mid-term, and long-term 
analyses, respectively, so that there is a clear advise on which 𝑑𝑑 to choose for each term. 
2.4. Calculation of the divergence 

Having estimated 𝒫𝒫→ and 𝒫𝒫←, we can now quantify their difference. As measure for such a 
difference, one usually employs the Kullback-Leibler divergence KLD, which for two 
arbitrary probability distributions 𝒫𝒫% and 𝒫𝒫7 is defined as 

KLD 𝒫𝒫%, 𝒫𝒫7 = 𝒫𝒫% 𝑦𝑦 ⋅ log7
𝒫𝒫% 𝑦𝑦
𝒫𝒫7 𝑦𝑦

I

. (3) 

It reflects, loosely speaking, how much additional information 𝒫𝒫7 contains when one already 
knows 𝒫𝒫%. However, it has two important disadvantages: For one thing, it is not commutative 
(i.e., KLD 𝒫𝒫%, 𝒫𝒫7 ≠ KLD 𝒫𝒫7, 𝒫𝒫% ), and there is no reason in our context to lay more focus 
on 𝒫𝒫→ than on 𝒫𝒫← or vice versa. For another thing, the KLD has no finite maximum, which 
makes its interpretation difficult. Both disadvantages can be overcome by using the Jensen-
Shannon divergence JSD instead, which is based on the KLD. It is calculated as  

JSD 𝒫𝒫%, 𝒫𝒫7 = 1 2 ⋅ KLD 𝒫𝒫%,ℳ + 1 2 ⋅ KLD 𝒫𝒫7,ℳ , (4) 

where ℳ = 1 2 ⋅ 𝒫𝒫% + 1 2 ⋅ 𝒫𝒫7 is the mixture distribution of 𝒫𝒫% and 𝒫𝒫7. 

These formulas may look more complicated than they really are; their application to the 
continuous example from Figure 1 will demonstrate this. For this purpose, a scheme (Table 2) 
is introduced that can generally be used to calculate the JSD. The rows of this scheme have to 
be filled with all potential permutations for the chosen 𝑑𝑑 (including those that do not appear in 
the discretized series) first. Then, it is just calculated column by column. The JSD is finally 
given by the simple mean of the sums in the last two columns.  

𝑦𝑦 𝑘𝑘I→ 𝒫𝒫→ 𝑦𝑦  𝑘𝑘I← 𝒫𝒫← 𝑦𝑦  ℳ 𝑦𝑦  𝒫𝒫→ 𝑦𝑦 ⋅ log7
𝒫𝒫→ 𝑦𝑦
ℳ 𝑦𝑦

 𝒫𝒫← 𝑦𝑦 ⋅ log7
𝒫𝒫← 𝑦𝑦
ℳ 𝑦𝑦

 

(1,2) 3 5/9 2 4/9 1/2 0.08445 -0.07552 
(2,1) 2 4/9 3 5/9 1/2 -0.07552   0.08445 
Σ 5 = 𝑚𝑚 1 5 1 1   0.008924   0.008924 

Table 2: Scheme for the calculation of the JSD (applied to the example from Figure 1). 

2.5. Normalization to the IREV 

So here, the JSD is JSD = 1 2 ⋅ 0.008924 + 1 2 ⋅ 0.008924 = 0.008924,1 given in bits. In 
principle, one could already define this value as output of the IREV; it even had a quite 
intelligible interpretation similar to the one of the KLD (which would be without clear 
meaning in practical trading though). However, it still exhibits an important limitation: It is 

																																																													
1 The equality of both column sums in our example comes from 𝑑𝑑 = 2.  

(3)

It reflects, loosely speaking, how much additional information 
𝒫 2 contains when one already knows 𝒫 1. However, it has two 
important disadvantages: For one thing, it is not commutative 
[i.e., KLD (𝒫1,𝒫2)  KLD (𝒫2 ,𝒫1) ], and there is no reason in our 
context to lay more focus on 𝒫→ than on 𝒫← or vice versa. For 
another thing, the KLD has no finite maximum, which makes its 
interpretation difficult. Both disadvantages can be overcome 
by using the Jensen-Shannon divergence JSD instead, which is 
based on the KLD. It is calculated as
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As we now have obtained a practicable method for estimating 𝒫𝒫→ and 𝒫𝒫← dependent on 𝑑𝑑 
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available for this purpose (𝑛𝑛 − 𝑑𝑑 − 1 ). Thus, high values of 𝑑𝑑, which would be preferable 
as mentioned earlier, require a large 𝑛𝑛; 𝑛𝑛 ≥ 𝑑𝑑 + 1 ! ([8]) can be seen as a rule of thumb. 
This shows why in practice, only 𝑑𝑑 = 2 (𝑛𝑛 ≥ 6), 𝑑𝑑 = 3 (𝑛𝑛 ≥ 24), and 𝑑𝑑 = 4 (𝑛𝑛 ≥ 120) are 
meaningful. These values for 𝑛𝑛 can be interpreted as short-term, mid-term, and long-term 
analyses, respectively, so that there is a clear advise on which 𝑑𝑑 to choose for each term. 
2.4. Calculation of the divergence 

Having estimated 𝒫𝒫→ and 𝒫𝒫←, we can now quantify their difference. As measure for such a 
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arbitrary probability distributions 𝒫𝒫% and 𝒫𝒫7 is defined as 
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continuous example from Figure 1 will demonstrate this. For this purpose, a scheme (Table 2) 
is introduced that can generally be used to calculate the JSD. The rows of this scheme have to 
be filled with all potential permutations for the chosen 𝑑𝑑 (including those that do not appear in 
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2.5. Normalization to the IREV 

So here, the JSD is JSD = 1 2 ⋅ 0.008924 + 1 2 ⋅ 0.008924 = 0.008924,1 given in bits. In 
principle, one could already define this value as output of the IREV; it even had a quite 
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meaning in practical trading though). However, it still exhibits an important limitation: It is 
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continuous example from Figure 1 will demonstrate this. For this purpose, a scheme (Table 2) 
is introduced that can generally be used to calculate the JSD. The rows of this scheme have to 
be filled with all potential permutations for the chosen 𝑑𝑑 (including those that do not appear in 
the discretized series) first. Then, it is just calculated column by column. The JSD is finally 
given by the simple mean of the sums in the last two columns.  

𝑦𝑦 𝑘𝑘I→ 𝒫𝒫→ 𝑦𝑦  𝑘𝑘I← 𝒫𝒫← 𝑦𝑦  ℳ 𝑦𝑦  𝒫𝒫→ 𝑦𝑦 ⋅ log7
𝒫𝒫→ 𝑦𝑦
ℳ 𝑦𝑦

 𝒫𝒫← 𝑦𝑦 ⋅ log7
𝒫𝒫← 𝑦𝑦
ℳ 𝑦𝑦

 

(1,2) 3 5/9 2 4/9 1/2 0.08445 -0.07552 
(2,1) 2 4/9 3 5/9 1/2 -0.07552   0.08445 
Σ 5 = 𝑚𝑚 1 5 1 1   0.008924   0.008924 

Table 2: Scheme for the calculation of the JSD (applied to the example from Figure 1). 

2.5. Normalization to the IREV 

So here, the JSD is JSD = 1 2 ⋅ 0.008924 + 1 2 ⋅ 0.008924 = 0.008924,1 given in bits. In 
principle, one could already define this value as output of the IREV; it even had a quite 
intelligible interpretation similar to the one of the KLD (which would be without clear 
meaning in practical trading though). However, it still exhibits an important limitation: It is 

																																																													
1 The equality of both column sums in our example comes from 𝑑𝑑 = 2.  

Normalization to the IREV
So here, the JSD is  1  

given in bits. In principle, one could already define this value as 
output of the IREV; it even had a quite intelligible interpretation 
similar to the one of the KLD (which would be without clear 
meaning in practical trading, though). However, it still exhibits 
an important limitation: It is not clear how large it should be 
regarded, due to the lack of a reference quantity. While JSDs 
always range between 0 and 1, so that one might be tempted to 
consider the above value rather small, it is not clear whether 
these theoretical boundaries can actually be met in our context 
(for example, because 𝒫→ and 𝒫← are not independent of each 
other). Thus, the actual extremes have to be found, and the IREV 
has to be normalized accordingly as a last step.

The JSD takes its minimum value of 0 when 𝒫 1 and 𝒫 2 are 
identical. So the question is whether a price development exists 
for which 𝒫→ = 𝒫← This is the case at least for a stagnating 
development,2 so that the lower bound of 0 can be regarded as 
sharp. The actual maximum value will inversely be reached for 
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a monotonously increasing (or decreasing) price development, 
as  and   exhibit the largest difference for these cases. 
However, it can be shown with some effort (see Appendix A) that 
this maximum is not at 1 but only at

6 

not clear as how large it should be regarded, due to the lack of a reference quantity. While 
JSDs always range between 0 and 1, so that one might be tempted to consider the above value 
rather small, it is not clear whether these theoretical boundaries can actually be met in our 
context (for example because 𝒫𝒫→ and 𝒫𝒫← are not independent of each other). Thus, the actual 
extremes have to be found and the IREV has to be normalized accordingly as a last step. 

The JSD takes its minimum value of 0 when 𝒫𝒫% and 𝒫𝒫7 are identical. So the question is 
whether a price development exists for which 𝒫𝒫→ = 𝒫𝒫←. This is the case at least for a 
stagnating development,2 so that the lower bound of 0 can be regarded as sharp. The actual 
maximum value will inversely be reached for a monotonously increasing (or decreasing) price 
development, as 𝒫𝒫→ and 𝒫𝒫← exhibit the largest difference for these cases. However, it can be 
shown with some effort (see Appendix A) that this maximum is not at 1 but only at 

JSDXYZ =
𝑚𝑚 + 2

𝑚𝑚 + 2 ⋅ 𝑑𝑑!
⋅ log7

2 ⋅ 𝑚𝑚 + 4
𝑚𝑚 + 4

+
2

𝑚𝑚 + 2 ⋅ 𝑑𝑑!
⋅ log7

4
𝑚𝑚 + 4

< 1. 3 (5) 

For the usual parameter values of the IREV as given above, the following maximum values 
are obtained: JSDXYZ = 0.2358 for 𝑑𝑑 = 2 and 𝑛𝑛 = 6, JSDXYZ = 0.4655 for 𝑑𝑑 = 3 and 𝑛𝑛 =
24,  JSDXYZ = 0.6442 for 𝑑𝑑 = 4 and 𝑛𝑛 = 120. 

These results mean that the divergence between 𝒫𝒫→ and 𝒫𝒫← needs to be dilated (but not to be 
shifted). The so-normalized JSD is a useful measure for the degree of irreversibility of a price 
movement. However, we want the IREV to additionally indicate the direction of this 
movement. For this purpose, we can simply compare the (forward-read) probability of the 
strictly ascending permutation 1,… , 𝑑𝑑 , 𝒫𝒫→ 1,… , 𝑑𝑑 , with its counterpart for the strictly 
descending permutation 𝑑𝑑,… , 1 , 𝒫𝒫→ 1,… , 𝑑𝑑 , by the sign function sgn: the former 
(latter) being greater indicates an ascending (descending) price.4 

Summarizing, the IREV can be defined as follows: 

IREV 𝑑𝑑, 𝑛𝑛 = sgn
𝒫𝒫→ 1,… , 𝑑𝑑
𝒫𝒫→ 𝑑𝑑,… , 1

− 1 ⋅
JSD 𝒫𝒫→,𝒫𝒫←

JSDXYZ . (6) 

As JSDXYZ is a JSD itself and therefore measured in bits, this unit cancels out in (6). The 
IREV thus is unit-free; it gives the irreversibility in the current price window as share between 
0 (0%) and 1 (100%) (upward movement) or 0 (0%) and -1 (-100%) (downward movement). 
Due to this, its values are comparable across different windows and even across different 
assets. For the continuous example, we have IREV = +1 ⋅ 0.008924 0.2357955 =
0.03785 = 3.785%; the upward movement in Figure 1 can so be judged as almost 
completely reversible (no trend), and this is what indeed happens for 𝑡𝑡 ≥ 9. 

The calculation of the IREV as pseudo-code can be found in Appendix B. 

 

 

																																																													
2 Due to above-mentioned random splitting of ties, this is true only in probability. 
3 More precisely, lim

(→d
JSDXYZ = 1, i.e. JSDXYZ reaches 1 (only) asymptotically for all 𝑑𝑑. 

4 There may be some theoretical edge cases for which this simple rule fails. 
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the direction of this movement. For this purpose, we can simply 
compare the (forward-read) probability of the strictly ascending 
permutation (1,…, d), 𝒫→ ((1,…, d)), with its counterpart for the 
strictly descending permutation (d,…,1), 𝒫→ ((1,…, d)), by the 
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Summarizing, the IREV can be defined as follows:

6 

not clear as how large it should be regarded, due to the lack of a reference quantity. While 
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are obtained: JSDXYZ = 0.2358 for 𝑑𝑑 = 2 and 𝑛𝑛 = 6, JSDXYZ = 0.4655 for 𝑑𝑑 = 3 and 𝑛𝑛 =
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As JSDXYZ is a JSD itself and therefore measured in bits, this unit cancels out in (6). The 
IREV thus is unit-free; it gives the irreversibility in the current price window as share between 
0 (0%) and 1 (100%) (upward movement) or 0 (0%) and -1 (-100%) (downward movement). 
Due to this, its values are comparable across different windows and even across different 
assets. For the continuous example, we have IREV = +1 ⋅ 0.008924 0.2357955 =
0.03785 = 3.785%; the upward movement in Figure 1 can so be judged as almost 
completely reversible (no trend), and this is what indeed happens for 𝑡𝑡 ≥ 9. 
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2 Due to above-mentioned random splitting of ties, this is true only in probability. 
3 More precisely, lim

(→d
JSDXYZ = 1, i.e. JSDXYZ reaches 1 (only) asymptotically for all 𝑑𝑑. 

4 There may be some theoretical edge cases for which this simple rule fails. 

(6)

As is a JSDmax itself and therefore measured in bits, this 
unit cancels out in (6). The IREV thus is unit-free; it gives the 

irreversibility in the current price window as share between 0 
(0%) and 1 (100%) (upward movement) or 0 (0%) and -1 (-100%) 
(downward movement). Due to this, its values are comparable 
across different windows and even across different assets. 
For the continuous example, we have IREV = (+1) • 0.008924 
0.2357955 = 0.03785 = 3.785%; the upward movement in Figure 1 
can so be judged as almost completely reversible (no trend), and 
this is what indeed happens for t≥9.

The calculation of the IREV as pseudo-code can be found in 
Appendix B.

Application
The IREV can be applied and interpreted in several ways, but 

it is important to understand how it works and what its results 
mean, as one otherwise is prone to fallacies.

Meaning of period length n and dimension d
As indicated earlier, IREVs with essentially different 

parameter values represent different analyses, mostly with 
regard to the time range examined. Consider the instructive 
development of the Volkswagen stock market price (VOW3.
DE) in the second half of 2018 and three indicators IREV(2, 6), 
IREV(3, 24), and IREV(2, 24), each based on close prices, for 
illustration (Figure 3). The interpretation of the IREV will be 
postponed to the next section; here, we are only concerned with 
the different parameter values.

Figure 3. Volkswagen Stock Market Price (VOW3.DE) in Second Half of 2018 With Three IREVs
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Comparing the two “usual” IREVs, i.e., the short-term IREV  
(2, 6) and the mid-term IREV (3, 24), it can be seen that the latter 
gives many fewer signals than the former. This behavior is not 
surprising for larger period lengths and well-known from other 
indicators, such as moving averages. However, here, it is not 
so much due to stronger smoothing but rather due to different 
definitions of vertical movements (i.e., trends). This can be 
well observed at point B: As the short-term IREV sees only the 
last 6 trading days, which here have all been bearish, it is clear 
that it gives a signal. In contrast, the mid-term IREV looks back 
24 trading days and therefore sees the whole “Double Top” 
formation right before B, not only its right part. There is no 
factual movement in this context, and so none is identified. At 
point C, when the IREV (2, 6) has already found a further short-
term movement due to an in-between high, the formation’s left 
part disappears for the IREV (3, 24), so that it now recognizes the 
former movement, too. However, it now should be interpreted as 
a mid-term one. This is a meaningful difference about which one 
has to be clear when choosing the period length n.

The dimension d rather is a technical parameter. As 
mentioned earlier, one would like to choose a large d in order 
to capture more information, but this choice is limited by the 
requirement of n≥(d+1)!. If one intends to analyze wide price 
development windows (i.e., a large n) anyway, however, there is 
hardly a point in choosing a value for d smaller than necessary,4 
as it has been done here for the IREV (2, 24). Comparing it to 
the IREV (3, 24), no substantial differences can be recognized; 
rather, the former just reflects the latter but is less detailed due 
to less information carried.

Interpretation of the IREV
Attentive readers may have been surprised by Figure 3, to 

which we will refer here again, as it may seem that the IREVs 
were presented inversed there: We have defined them as 
indicators for the irreversibility of a price movement, but here, 
they almost perfectly identify its highs and lows (e.g., B and C) 
(i.e., points at which the trend reverts)!

The fallacy in this line of thinking is that “irreversibility” 
does not relate to a pair of a trend and a counter trend—as these 
trends can both be irreversible internally—but to the distinction 
between a trend and a horizontal movement. This can be well 
seen by the local high D: Before it, undoubtedly a trend has 
occurred, which has correctly been recognized. What follows 
is no counter trend (as for points B and C), however, but just 
irrelevant wriggling of the price (E); correspondingly, the IREV 
does not give a further signal.

As expected in the introduction to this work, the IREV can 
primarily be interpreted to indicate 1) the existence, 2) the 
so-far strength, and 3) the direction of a trend. With the trend 
becoming stronger, its absolute value increases until it reaches 
the maximum of 1. Of course, this is much more likely to happen 
for smaller period lengths than for larger ones, which explains 
the difference in scale between the IREV (2, 6) and the mid-term 
IREVs and will have to be taken into account when choosing 
a trading rule (discussed later). The IREV stays at its extreme 
value until it notices first indications of the trend’s end. In the 
figure, this is exemplified by the long peak of the IREV (2, 6) right 
before point B.

This interpretation would more or less apply to other 
irreversibility indicators as well (if such existed). However, 
due to its calculation on the basis of ordinal permutations, 
the IREV can also be interpreted in the momentum context. 
A comparison with the Relative Strength Index (RSI), the 
arguably most famous indicator from the latter category, can 
illustrate the connection: Both indicators consider the upward 
and downward movements of the last days. The RSI determines 
their sums and averages but does not take into account their 
dynamics (i.e., the order of values); for the IREV, it is the other 
way around.5 The consequences are exemplified by point A in the 
figure: Shortly before it (i.e., in the beginning of August 2018), 
the Volkswagen stock market price has fallen with an unusually 
high speed (presumably due to the release of a half-year report), 
which, however, does not enter the calculation of the IREV. 
Correspondingly, the trend that the IREV (3, 24) indicates here is 
not really justified (the signal of the IREV (2, 6) is due to a short 
upward movement right before A), while a RSI (6) (not shown 
in the figure) would correctly have kept calm here. On the other 
hand, the RSI (6) would have identified only two of the five IREV 
(2, 6)’s correct peaks—namely, the second and the fifth (point 
D); it misses the other three peaks (among them points B and C) 
because they average out.

Trading system and quantitative evaluation
After the qualitative analysis of the IREV, we will finally 

evaluate it quantitatively in a field test. For this purpose, a 
trading system is constructed that is solely based on the IREV 
and makes use of a very primitive trading rule:

Long if IREV > t, Short if IREV < –t, Unchanged position else

As indicated earlier, the threshold value t should be chosen 
in dependence of n because the IREV reaches its maximum 
value of 1 the less likely the wider the window is for which it is 
calculated. A corresponding normalization can be to set 
, where a is a constant for all n; here, we choose a=2.4, which 
leads to t=0.4 for the IREV (2, 6) and t=0.1 for the IREV (3, 24). 
Figure 3 indicates that these are sensible threshold values.

Note that the presented trading system has been constructed 
only for demonstrative purposes and should not be applied to 
real trading. This is because the IREV, like any indicator, should 
never be used as the only source of information; rather, it should 
be combined with other indicators that capture further aspects 
of the price development (see Introduction).

As a benchmark for the IREV, the famous Moving Average 
Convergence/Divergence (MACD) indicator is employed; once in 
its standard configuration with periods of 12, 26, and 5 trading 
days, and once with halved values (i.e., 6, 13, and 5) to ensure 
a fair comparison with the IREV (2, 6). The MACD’s standard 
trading rule (signal when the indicator crosses the signal line) is 
used for both versions.

The four indicators are calculated based on close prices, with 
the usual lag of one trading day, for the full year 2018 for all 30 
members of the DAX (with the exception of LIN.DE due to raw 
data problems). For each of these assets, the cumulated annual 
return from using each indicator is measured by the common 
backtesting approach (see, e.g., [11]).
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The results are presented in Table 3. For their interpretation, 
one should keep in mind that the DAX fell by 18% in 2018, so 
that all indicators are subject to a bear market. So, it is not 
surprising that most of them (namely the mid-term IREV and 
both MACDs) exhibit positive returns for only about 1/3 of 
the assets. The actual surprise is that this number is as high 
as 58.6% (=17/29) for the IREV (2, 6), which demonstrates that 
it successfully captures short-term profits as it is supposed 
to. Correspondingly, it also obtains the highest average 
cumulated return of all four indicators: +4.51%. This might not 
be considered a large return in a year, but making profits at 
all in a bear market already is a noteworthy contribution. The 
mid-term IREV achieves a similar result (+4.05%), although this 
is rather due to a few very good trades than due to many good 
ones. In contrast, the two MACDs cannot compete with this 
performance: With both of them, traders would have lost money 
in 2018; for the traditional MACD (12, 26, 9), the average loss is 
as high as -7.73%.

The final decision on which indicator to use should arguably 
be based on the percentage of cases (assets) for which each 
indicator performs best (green cells in the table). Here, a clear 
winner can be declared: the short-term IREV. It achieves the 
highest return almost in each second case and, thus, three times 
as often as each of its competitors (14 vs. 5).

Conclusion
In this work, a first irreversibility indicator, the IREV, has 

been introduced. Even when employed as the only indicator 
in a trading system and using a very primitive trading rule, it 
exhibited promising results, greatly outperforming the common 
MACD indicator. Still, as next steps, its interplay with other 
indicators (as reasoned earlier, particularly the RSI seems 
to be a well-suited complement) should be investigated and, 
potentially integrating these, a more complex trading rule 
should be searched for.

Further research attention should also be given to the whole 
category of irreversibility indicators, as this concept still has 
not been exploited in practical trading despite its manifold 
possibilities of application. For example, another such indicator 
could be easily constructed by replacing the IREV’s calculation 
by ordinal permutations (which also deserve separate 
investigation) with methods that are based on other criteria 
than the order of price changes. This can be inspired by the 
academic literature on time series analysis.
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Notes
1	 The equality of both column sums in our example comes from d=2. 
2	 Due to above-mentioned random splitting of ties, this is true only in 

probability.
3	 There may be some theoretical edge cases for which this simple rule 

fails.
4	One could only argue that  𝒫→ and 𝒫← are more reliably estimated 

in that case.
5	 Therefore, it can be assumed that the IREV and the RSI complement 

each other well.

Table 3. Cumulated Annual Returns for the IREV in 
Comparison to the MACD

Symbol
IREV
(2, 6)

IREV
(3, 24)

MACD
(12, 26, 9)

MACD
(6, 13, 5)

1COV.DE -0.04% +64.76% -11.18% +73.41%
ADS.DE +31.88% -23.25% +0.79% -2.20%
ALV.DE +5.85% -26.37% -2.99% +4.88%
BAS.DE +19.51% +17.23% +4.29% +15.88%
BAYN.DE +18.23% -8.35% -27.74% +1.01%
BEI.DE +2.20% -3.79% -13.22% -13.47%
BMW.DE +9.35% +21.32% -10.49% -17.09%
CON.DE +79.08% +75.92% -19.82% -50.74%
DAI.DE +0.26% -5.25% -28.45% -16.85%
DB1.DE -31.10% -5.48% -30.41% -19.91%
DBK.DE +83.30% +83.26% +15.75% +47.08%
DPW.DE +17.04% +49.81% +60.19% -27.14%
DTE.DE +15.89% -1.30% +9.92% +8.53%
EOAN.DE -3.13% -12.32% +1.46% -10.14%
FME.DE -28.79% -4.23% -28.71% -15.51%
FRE.DE +26.67% -1.93% -45.76% -9.78%
HEI.DE +17.02% -2.13% -4.65% -5.38%
HEN3.DE -15.55% -15.43% -5.05% -9.02%
IFX.DE +7.69% -22.16% -1.04% +23.61%
LHA.DE -35.52% -41.47% +5.29% -20.34%
MRK.DE +11.78% +2.35% -18.60% -35.35%
MUV2.DE -9.14% -14.86% -23.88% -8.82%
RWE.DE -41.17% -40.65% +35.88% +46.36%
SAP.DE +19.83% +15.64% -24.09% -3.71%
SIE.DE -6.99% -18.49% -23.25% +46.43%
TKA.DE +15.29% -3.30% -28.06% +6.26%
VNA.DE -25.98% -1.39% -1.91% -19.58%
VOW3.DE -46.35% -5.83% +6.25% -1.44%
WDI.DE -6.41% +45.14% -14.75% -27.41%
Mean +4.51% +4.05% -7.73% -1.39%
# is + 17 9 9 10
# is best 14 5 5 5
LIN.DE has been excluded due to raw data problems
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Appendix A: Derivation of (5)
With regard to the actual maximum of JSDmax of JSD (𝒫→, 𝒫←), it has already been pointed out that it will be reached exactly for a 

monotonously increasing price. Such a development is characterized by the appearance of only the strictly ascending permutation (1,…,d) in 
the forward movement and only the strictly descending permutation (d,…,1) in the backward movement. All other permutations appear with 
the same frequency in both movements – namely zero – so that they cancel out from the calculation due to 𝒫→( y) = 𝒫← ( y) = M ( y) and, thus, 
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and, thus, log7
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ℳ 𝑦𝑦
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 𝐴𝐴 𝐵𝐵 
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𝑚𝑚 + 2
𝑚𝑚 + 2 ⋅ 𝑑𝑑!

 
𝑚𝑚 2 + 2
𝑚𝑚 + 2 ⋅ 𝑑𝑑!

 𝐶𝐶 𝐷𝐷 

all 
others 0 

0 + 2
𝑚𝑚 + 2 ⋅ 𝑑𝑑!

	 0 
0 + 2

𝑚𝑚 + 2 ⋅ 𝑑𝑑!
 

0 + 2
𝑚𝑚 + 2 ⋅ 𝑑𝑑!

 0 0 

Σ 𝑚𝑚 1 𝑚𝑚 1 1 𝐴𝐴 + 𝐶𝐶 𝐵𝐵 + 𝐷𝐷 
Table 4: Reduced scheme from Table 2 for the calculation of 𝐉𝐉𝐉𝐉𝐉𝐉𝐦𝐦𝐦𝐦𝐦𝐦. 
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Appendix B: Pseudo-code for the IREV 
IREV := function(d, n, x) { 
 for (i:=n, i<=length(x), i:=i+1) { 
  Pfw := estimateP(x, i-n+1, i, d); 
  Pbw := estimateP(x, i, i-n+1, d); 
  normJSD := JSD(Pfw, Pbw)/JSDmax(d, n); 
  dir := sgn(Pfw[(1,…,d)]/Pfw[(d,…,1)]-1); 
  irev[i] := dir*normJSD; 
 } 
 return irev; 
} 
 
estimateP := function(x, from, to, d) { 
 dist := sgn(to-from)*(d-1); 
 k := [0,…,0]; 
 for (i:=from, i<=to-dist, i:=i+1) { 
  y := order(x[i,…,i+dist]); 
  k[y] := k[y]+1; 
 } 
 m := n-(d-1); 
 for (i:=1, i<=d!, i:=i+1) { 
  P[y] := (k[y]+2)/(m+2*d!); 
 } 
 return P; 
} 
 
Assumed: length, sgn, order 

JSD := function(P1, P2) { 
 M := (P1+P2)/2; 
 jsd := (KLD(P1, M)+KLD(P2, M))/2; 
 return jsd; 
} 
 
KLD := function(P1, P2) { 
 kld := 0; 
 for (i:=1, i<=length(P), i:=i+1) { 
  kld := kld+P1[i]*log2(P1[i]/P2[i]); 
 } 
 return kld; 
} 
 
JSDmax := function(d, n) { 
 m := n-(d-1); 
 z1 := (m+2)/(m+2*d!); 
 z2 := log2((2*m+4)/(m+4)); 
 z3 := 2/(m+2*d!); 
 z4 := log2(4/(m+4)); 
 jsd := z1*z2+z3*z4; 
 return jsd; 
} 
 
 

. Consequently, the calculation scheme presented in Table 2 reduces to the one given in Table 4.

Table 4. Reduced Scheme From Table 2 for the Calculation of JSDmax
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and, thus, log7
𝒫𝒫 →,← I
ℳ I

= log7 1 = 0. Consequently, the calculation scheme presented in 

Table 2 reduces to the one given in Table 4. 

𝑦𝑦 𝑘𝑘I→ 𝒫𝒫→ 𝑦𝑦  𝑘𝑘I← 𝒫𝒫← 𝑦𝑦  ℳ 𝑦𝑦  𝒫𝒫→ 𝑦𝑦 ⋅ log7
𝒫𝒫→ 𝑦𝑦
ℳ 𝑦𝑦

 𝒫𝒫← 𝑦𝑦 ⋅ log7
𝒫𝒫← 𝑦𝑦
ℳ 𝑦𝑦

 

(1,…,𝑑𝑑) 𝑚𝑚 
𝑚𝑚 + 2

𝑚𝑚 + 2 ⋅ 𝑑𝑑!
 0 

0 + 2
𝑚𝑚 + 2 ⋅ 𝑑𝑑!

 
𝑚𝑚 2 + 2
𝑚𝑚 + 2 ⋅ 𝑑𝑑!

 𝐴𝐴 𝐵𝐵 

(𝑑𝑑,…,1) 0 
0 + 2

𝑚𝑚 + 2 ⋅ 𝑑𝑑!
	 𝑚𝑚 

𝑚𝑚 + 2
𝑚𝑚 + 2 ⋅ 𝑑𝑑!

 
𝑚𝑚 2 + 2
𝑚𝑚 + 2 ⋅ 𝑑𝑑!

 𝐶𝐶 𝐷𝐷 

all 
others 0 

0 + 2
𝑚𝑚 + 2 ⋅ 𝑑𝑑!

	 0 
0 + 2

𝑚𝑚 + 2 ⋅ 𝑑𝑑!
 

0 + 2
𝑚𝑚 + 2 ⋅ 𝑑𝑑!

 0 0 

Σ 𝑚𝑚 1 𝑚𝑚 1 1 𝐴𝐴 + 𝐶𝐶 𝐵𝐵 + 𝐷𝐷 
Table 4: Reduced scheme from Table 2 for the calculation of 𝐉𝐉𝐉𝐉𝐉𝐉𝐦𝐦𝐦𝐦𝐦𝐦. 

Here, 𝐴𝐴 = q$7
q$7⋅r!

⋅ log7
stu

stu⋅v!
s utu
stu⋅v!

= q$7
q$7⋅r!

⋅ log7
q$7

q$7⋅r!
⋅ q$7⋅r!
q 7$7

= q$7
q$7⋅r!

⋅ log7
7⋅q$w
q$w

, 

𝐵𝐵 = x$7
q$7⋅r!

⋅ log7
ytu

stu⋅v!
s utu
stu⋅v!

= 7
q$7⋅r!

⋅ log7
7

q$7⋅r!
⋅ q$7⋅r!
q 7$7

= 7
q$7⋅r!

⋅ log7
w

q$w
, and, for 

symmetry reasons, 𝐷𝐷 = 𝐴𝐴 and 𝐶𝐶 = 𝐵𝐵. From this follows (5): JSDXYZ = z${ $ |$}
7

=
z$|$|$z

7
= 𝐴𝐴 + 𝐵𝐵 = q$7

q$7⋅r!
⋅ log7

7⋅q$w
q$w

+ 7
q$7⋅r!

⋅ log7
w

q$w
. 

Appendix B: Pseudo-code for the IREV 
IREV := function(d, n, x) { 
 for (i:=n, i<=length(x), i:=i+1) { 
  Pfw := estimateP(x, i-n+1, i, d); 
  Pbw := estimateP(x, i, i-n+1, d); 
  normJSD := JSD(Pfw, Pbw)/JSDmax(d, n); 
  dir := sgn(Pfw[(1,…,d)]/Pfw[(d,…,1)]-1); 
  irev[i] := dir*normJSD; 
 } 
 return irev; 
} 
 
estimateP := function(x, from, to, d) { 
 dist := sgn(to-from)*(d-1); 
 k := [0,…,0]; 
 for (i:=from, i<=to-dist, i:=i+1) { 
  y := order(x[i,…,i+dist]); 
  k[y] := k[y]+1; 
 } 
 m := n-(d-1); 
 for (i:=1, i<=d!, i:=i+1) { 
  P[y] := (k[y]+2)/(m+2*d!); 
 } 
 return P; 
} 
 
Assumed: length, sgn, order 

JSD := function(P1, P2) { 
 M := (P1+P2)/2; 
 jsd := (KLD(P1, M)+KLD(P2, M))/2; 
 return jsd; 
} 
 
KLD := function(P1, P2) { 
 kld := 0; 
 for (i:=1, i<=length(P), i:=i+1) { 
  kld := kld+P1[i]*log2(P1[i]/P2[i]); 
 } 
 return kld; 
} 
 
JSDmax := function(d, n) { 
 m := n-(d-1); 
 z1 := (m+2)/(m+2*d!); 
 z2 := log2((2*m+4)/(m+4)); 
 z3 := 2/(m+2*d!); 
 z4 := log2(4/(m+4)); 
 jsd := z1*z2+z3*z4; 
 return jsd; 
} 
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Abstract
This article is an extension to the MFTA paper titled “Linear 

Momentum and Performance Indicators”, published in the 2019 
IFTA Journal. The market performance indicators consist of two 
main groups: performance and integral performance indicators. 
The latter group leads prices and dissects the market’s 
performance into six main elements: the market’s momentum, 
pressure, strength, power, intensity and dynamic strength. 
This article enlightens about how those integral indicators are 
leading from a cyclical perspective. On another note, the integral 
power index is dissected thoroughly to show that its higher highs 
refer to weakness in prices and not strength! The reasoning 
behind this irregular behaviour leads to the introduction of a 
new concept in technical analysis—Market Energy.

Introduction

An Overview of the Market Integral Performance 
Indicators

The Integral Force Index (IFORI), alternatively the Linear 
Momentum Index (LMOMI)—LMOMI shows an adjustment of the 
price momentum concept in technical analysis. The contribution 
of volumes is a must to describe the price momentum.

The Integral Pressure Index (IPRI) measures the market 
integrated pressure. It relates the price momentum and 
volatility. A rising buying momentum is not necessarily 
accompanied by increasing buying pressure.

The Integral Strength Index (ISTRI) measures the market 
integrated strength, which analyzes the ability of bulls to resist 
the bears and vice versa. A high buying strength does not mean 
the bulls control the market; however, it indicates that the bears 
are unable to take over yet. The ISTRI relates the bulls and bears 
momentum to the magnitude of the session’s shadow.

The following three indicators are the product of the price 
average velocity known as Wilder’s momentum by the IFORI, 
IPRI and ISTRI, respectively.

The Integral Power Index (IPWRI) measures the market 
integrated power and differentiates it from the market 
momentum.

The Integral Intensity Index (IINTI) refers to how steep the 
moves of prices are. It can be thought of how fast the market is 
pressurised.

The Integral Dynamic Strength Index (IDSTRI) refers to the rate 
by which the market is showing strength.

In this article, the term momentum refers to linear momentum. 
The core of the formulas for those indicators is the following:

To construct the indicators we add 14-day exponential moving 
averages to the formulas.

Mapping the Leading Indicators
The integral performance indicators (IPERIs) are leading to 

prices and leading each other, as shown in Figure 1.

Figure 1. The Lead Chart of Integral Performance Indicators
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In Table 1, if the ISTRI is behaving differently than the 
IPRI and the IFORI during the same time interval of the first 
phase, then both will follow the ISTRI afterwards. To clarify, 
sometimes the ISTRI traces a higher high, showing a rise in 
buying integrated strength, and simultaneously the IPRI and 
IFORI trace a lower high, showing a decline in buying pressure 
and momentum, respectively. According to this situation, the 
buying pressure, momentum and prices should increase as 
shown in Table 1. In Table 2 and 4, the same behaviour exists 
among the IDSTRI, IINTI, IPWRI and prices while a variance 
among the duration of the phase is accepted.

Figure 2. The Cyclical Lead Among the IPRI, IFORI and Prices

Figure 2 shows the rise of the EGX30 index in April 2009, 
accompanied by an increase in buying pressure and momentum. 
The index continued in an uptrend with a slight decline in 
buying momentum but with a rise in buying pressure in May. 
The surplus of the pressure over momentum paved the way to 
rising prices during June 2009. The indicators repeated the same 
behaviour from June to October. As a guideline, the negative 
divergence of the IFORI would fail when the IPRI does not show 
weakness in pressure.

Figure 3. Differences in Rising and Declining Rates of the 
Indicators

In Figure 3, the IFORI demonstrates a higher high at the 
beginning of 2018; moreover, the IPRI traces its second high at a 
greater rate. This excess of pressure refers to an existent buying 
momentum, which is represented by a higher peak that prices 
form in the following phase (after April 2018).
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Figure 4. EGX: Orascom Telecom (OTMT.CA) – Daily Chart

Figure 5. Testing the Support and Resistance

Figures 4 and 5 demonstrate the lead of the integral pressure 
to the momentum and the lead of the integral intensity to the 
integral power. The IINTI traced a lower low in July 2009, unlike 
the IPWRI. The difference in the declining rates is compensated 
for the subsequent extended phases by a decrease in selling 
power followed by a sharp decline in prices to test the support in 
November 2009.

Figure 6. The Lead Among Four Successive Phases

Figure 7. The Lead Among Four Successive Phases (cont’d)

In Figures 6 and 7, the first phase is for the first quarter 
of 2017. To define the phase’s boundaries, find an agreement 
between the IFORI and IPRI and a simultaneous contradiction 
with the ISTRI. In this example, both the IFORI and IPRI agreed 
on selling performance (grey and blue dips), while the ISTRI 
showed an existing resistance of buyers concurrently. The 
increase in buying pressure and momentum at the subsequent 
phases is not necessarily to be traced by the indicators.

Figure 8 demonstrates a weekly chart of EGAS.CA. The stock 
was moving in a downtrend before changing its direction. 
During the reversal phase, the rate by which the IDSTRI 
increases is higher than the rates by which the IINTI and IPWRI 
prices increase. In Figure 9, the stock has moved in a rally with 
more intensity and power. In phase 3, the increase in power 
is showable by a rise in prices and not the IPWRI. However, 
the latter has traced a negative divergence instead. Such a 
divergence does not refer to weakness rather than a corrective 
action the IPWRI takes. The next section clarifies the unusual 
behaviour of the IPWRI.

Figure 8. The Lead by the Comparison of the Rising and 
Declining Rates

Figure 9. The Leading Effect of the Integral Dynamic 
Strength Index
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Figure 10. The Behaviour of the Integral Strength Index 
in Downtrends

Figure 10 illustrates the rise of the encircled selling strength. 
In December 2012 and April 2013, the stock experienced 
significant and minor corrections in a downtrend. During those 
corrections, the bulls were temporarily in control. The IFORI and 
the IPRI expressed this situation by a rise in buying momentum 
and pressure. Simultaneously, the ISTRI showed amplification in 
the selling strength to indicate the end of those corrections. The 
high selling strength hinders the buyers from taking over.

Figure 11. Integral Indexes of Pressure vs. Force and 
Strength

Figure 12. Integral Power Index vs. Integral Force Index

The integral performance indicators shed light on the 
tendency of prices to move sideways, giving a clue when the 
IPRI is not acting like the IFORI and the ISTRI. Besides, prices 
lean toward moving sideways when the IPWRI and the IFORI 
contradict each other. Figure 11 exhibits that the bulls have 
a low buying strength, which signifies the weak resistance 
of bulls against the selling pressure. The bulls have still been 

pressuring the bears with low momentum. Consequently, this 
would balance the demand with supply for the following phases. 
As a result, prices initiate a sideway pause for the uptrend. The 
IPWRI in Figures 12 and 13 traces a higher high, unlike the IFORI. 
Figure 14 shows a higher low for the IPWRI, unlike the IFORI 
in phase 1. By projecting the same time interval forward, the 
analyst should expect the price to bounce from 1800 to 2100 
during phase 2.

Figure 13. Special Behaviour of the Integral Power Index

Figure 14. MSCI World Index (.WORLD) – Daily Chart

Not Every Higher High Is a Strength!
The IPWRI has a unique property that signifies weakness in 

price movement when it develops a higher high. This property is 
not typical for the momentum indicators in technical analysis. 
It arises from the relation between the price kinetic energy 
(integral power) and the price simple potential energy. Some 
people claim that the price behaviour in financial markets is 
affected by thermal, nuclear, or electromagnetic energies for 
such and such. Those speculations are not valid, as prices do not 
heat, radiate or carry the properties of an electron. However, the 
principles of kinetic and potential energies are applicable in the 
field of technical analysis as the price itself MOVES.

The kinetic energy (KE) is the energy a body owns by being in 
motion. The potential energy (PE) is the energy a body has due 
to its position relative to other objects or another level. The total 
energy (E) is the summation of those mechanical energies.

E = KE + PE

For isolated systems, the Law of Conservation of Energy states 
that the total energy in such systems remains constant over time.

Ein = Eout
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By analogy, energy is like cash. It is needed to perform some 
work “operations” through time. In a cash flow statement, the 
conservation between the cash inflows and outflows is a must. 
Any discrepancy in such conservation indicates a missing or 
inaccurate reflected item from the balance sheet. The same 
applies to the financial markets. The deviation from the law of 
conservation is what makes a difference between supply and 
demand driving a series of higher highs and higher lows during 
uptrends. However, the market may maintain the conservation 
in a later phase.

The movement of stocks is like consecutive rebounds of a 
ball. Figure 15 illustrates one rebound for a time interval of nine 
seconds (s). The ball hits the ground (turning point) at t = 1s to 
rebound with maximum velocity Vmax. For the ball to perform 
such an action, it needs a kinetic energy equivalent to (0.5 mv2), 
where m is the mass of the ball. The formula of potential energy 
is (mgx) where x is the displacement from a reference level and g 
is the gravitational acceleration.

•• At the ground level:  x = 0; v = vmax

•• At the peak:  x = xmax; v = 0  

Figure 15. Schematic Snapshot for the Tennis Ball 
Rebound Example

At the peak, the ball stops and loses its kinetic energy while 
gaining maximum potential energy due to its highest position 
relative to the ground. While falling downward, the ball gains 
back its kinetic energy and spends away its potential energy. At  
2 seconds and 8 seconds, the ball is at the same level where the 
total energy is conserved E2 = E8. Briefly, Figure 15 shows that:

•• For upside: KE declines and PE rises.
•• For downside: KE rises and PE declines.

For the sake of simplification, the g of the price PE is equal 
to one, although it is calculable. For this reason, it is called price 
simple potential energy. “The price acts like a body constituted 
from building blocks of shares. A point that changes its position 

with time represents the price body.” (El Sherbini, 2019). The 
mass of the price body is, therefore, its volume. Hence,

•• Price Kinetic Energy=0.5 Volume today . (Price vavg)2   =  0.5 V. (P – Py)2

•• Price Simple Potential Energy SPE = Volume today . Price today = V.P

The previous formulas point out that the IPWR measures 
the price KE. Both indicators have the same shape despite the 
multiplication by 0.5.

•• Price Kinetic Energy (Integral Power) = EMA14 [0.5 V. (P – Py )2 ]
•• Price Simple Potential Energy SPE = EMA14 (V.P)

Table 5. The Divergence of Price KE and SPE During Uptrends

Table 6. The Divergence of Price KE and SPE During 
Downtrends

Like the IPWRI, the price kinetic energy index (KEI) and the 
simple potential energy index (SPEI) fluctuate around their zero-
lines. They generate buying signals when the indexes cross the 
zero-lines upward and create selling signals when they cross the 
zero-lines downward. To construct the indexes, let
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•• SPEtoday  =  V.P

•• If Ptoday > Pyesterday; then +SPEtoday   

•• If Ptoday ≤ Pyesterday; then - SPEtoday 

•• SPEI=  EMA14 (± SPEtoday)

•• KEtoday =  0.5 V.(P-Py)2 

•• If Ptoday > Pyesterday; then +KEtoday   

•• If Ptoday ≤ Pyesterday; then - KEtoday   

•• KEI = EMA14 (±KEtoday)

SPE and KE represent market demand and supply, 
respectively. Figures 16, 17 and 18 clarify the relationships 
among the SPE, SPEI, KE, KEI (IPWRI) and prices. Since the SPEI 
and IPWRI are derived from SPE and KE, respectively, then 
any deviation by the indexes is a false representation. When 
prices rise, the price KE declines (normal behaviour). If the KE 
escalates along with prices, then this is considered a weakness. 
Also, it is ideal when the KE increases while prices are declining. 
If the KE drops when prices fall, then this is considered strength. 
Thus, the KEI or IPWRI usually shows positive divergences but 
false negative divergences. On another note, it is reasonable 
to see volatility continuation when prices decline because the 
KE rises (normal situation). Usually, when prices and KE rise, a 
volatile session (high range) will be preceded by relatively low 
volatile and sideway sessions, as shown in Figures 12 and 14.

Figure 16. FTSE 100 Index – Daily Chart

Figure 17. EGX: Commercial International Bank  
(COMI.CA) – Daily Line Chart

Figure 18. GBPJPY – Daily Chart

Conclusion
This article has highlighted the cyclical behaviour of the 

performance indicators and the use of their interaction to 
analyze the price motion. From this study, analysts can find 
that the edge of pressure over linear momentum indicators 
is by revealing excessive buying and selling pressure during 
a sideways squeeze. Unlike momentum indicators, they show 
negative divergences with prices that form higher highs 
with high ranges. Strength and dynamic strength indicators 
also have an edge at the end of corrections and counter-
trend movements. They are the first among the performance 
indicators to follow the primary trend direction back. The 
IPWRI also detects weakness in prices earlier than the linear 
momentum index. The early detection was interpreted briefly by 
the interaction of new indicators SPE and SPEI with the integral 
power and prices. Such an interaction is the facet of a newly 
introduced concept in technical analysis—“Market Energy”. This 
term also refers to market health.
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Summary: Use the measure rule to predict a price target after 
the breakout from a chart pattern.

In the second edition of my book, Encyclopedia of Chart 
Patterns, I explored how often a price prediction method called 
the measure rule works for over 60 chart and event patterns in 
both bull and bear markets. This article updates the results for 
various chart patterns, including how often the measure rule 
works and what to look for.

For most chart patterns, the measure rule is the height 
added to (upward breakouts) or subtracted from (downward 
breakouts) the breakout price. Figure 1 shows an example of the 
rule for an Eve & Eve double bottom.

Eve & Eve Double Bottom
An Eve & Eve double bottom has two valleys near the same 

price. Each valley appears wide and rounded. If spikes are 
present, they are usually short and clustered, like cut grass. 
Contrast the Eve bottom with an Adam bottom in October. An 
Adam bottom appears narrow, usually with a one- or two-day 
downward spike. The various combinations of Adam and Eve 
peaks or valleys for double tops and bottoms give performance 
and identification differences.

The time between the two bottoms of a double bottom varies, 
but the best performance comes from bottoms spaced three 
to seven weeks apart. Valleys wider than seven weeks show 
diminished performance after the breakout. The height of the 
pattern (as a percentage of the breakout price) from the lowest 
valley to the highest peak between the two valleys is at least 10 
percent, but allow variations. Tall chart patterns often perform 
substantially better than short ones.

In the example shown in Figure 1, a throwback occurs after 
the breakout when the stock returns to the breakout price. A 
throwback happens 67 percent of the time in the 2,295 double 
bottoms I looked at.

To apply the measure rule to double bottoms, subtract the 
lowest valley in the chart pattern (B) from the highest peak (A) 
to get the height. Since the breakout is upward, add the height 
to the highest peak (A) to get a target price. Price reaches or 
exceeds the target 69 percent of the time in a bull market, or 
about two out of every three trades.

Head-and-Shoulders Bottom
A head-and-shoulders bottom, such as the one shown in 

Figure 2, has a left shoulder that is opposite a right shoulder 
with a head in between. The shoulder valleys should bottom 

near the same price and be almost 
an equal distance from the head. 
Symmetry is important for easy 
identification.

The head must be below the two 
shoulder valleys; otherwise, you 
may be looking at a triple bottom. 
A neckline joins the armpits in the 
pattern, and it signals a trade when 
price closes above it (for down-sloping 
necklines only). For up-sloping 
necklines, use a close above the price 
of the peak located between the head 
and right shoulder as the buy signal. 
Otherwise, you may never get a buy 
signal for steep necklines. Volume 
is usually heavier on the head or left 
shoulder and diminished on the right 
shoulder.

The measure rule is unique for 
head-and-shoulders patterns (both 
tops and bottoms). Find the lowest 
valley in the head and measure the 
vertical distance from that low to the 
neckline. I show the measure between 

The Measure Rule
By Thomas Bulkowski

Figure 1. An Eve & Eve double bottom has a price target that matches the height 
of the chart pattern.

Thomas Bulkowski

tbul@hotmail.com
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the head and point A in Figure 2. That gives the height. Add the 
height to the breakout price—the point where price pierces the 
neckline (for down-sloping necklines) or the peak price between 
the head and right shoulder (for up-sloping necklines). The result 
is the target price. Price hits the target 73 percent of the time in 
a bull market.

Falling Wedge
A falling wedge is a somewhat 

rare pattern, and Figure 3 shows an 
example. A wedge is a price pattern 
bounded by two converging and down-
sloping trendlines. The trendlines will 
eventually join at the wedge apex. The 
breakout averages 57 percent of the 
way to the wedge apex.

Look for price to come close to or 
touch each trendline a total of five 
times or more—three times on one 
side and two on the other. Anything 
less than five touches and the pattern 
may be invalid. Price should also 
cross the pattern from side to side 
several times like that shown. Volume 
usually trends downward from the 
start of the pattern to just before the 
breakout.

The measure rule for upward 
breakouts from falling wedges is the 
top of the pattern, point A in Figure 
3. A downward breakout uses the 
height of the pattern (A–B) projected 
downward from the lowest valley 
in the pattern (B). Price reaches the 
top of the pattern 66 percent of the 
time in a bull market. For downward 
breakouts, the measure rule is less 
successful, working just 32 percent of 
the time. To increase the likelihood of 
a successful target, use half the height 
projected downward.

Symmetrical Triangle
Figure 4 shows a symmetrical 

triangle ABC. A symmetrical triangle 
is a chart pattern that has two 
converging trendlines that join at the 
triangle apex (C). The top trendline 
slopes downward, and the bottom one 
slopes upward. Look for at least two 
touches of each trendline, and make 
sure price crosses the chart pattern 
plenty of times, filling the pattern 
with price movement. Avoid cutting 
off a rounded turn and calling it a 
symmetrical triangle.

The traditional way to use the 
measure rule is to compute the height 

(A–B) and add it to the upward breakout price or subtract it 
from the downward breakout price. Price stages a breakout 
when it closes outside of the triangle trendline. This works 67 
percent of the time for upward breakouts and 44 percent of the 
time for downward breakouts in a bull market.

An alternative way to compute a price target is to draw a line 
parallel to the bottom trendline (for upward breakouts like 

Figure 2. A head-and-shoulders bottom uses the neckline as the vertical measure 
projected upward from the breakout point to compute a price target.

Figure 3. A falling wedge with an upward breakout needs price to rise to the top 
of the pattern to hit its target.
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that shown by the dashed line) or 
parallel to the down-sloping line AC, 
beginning at point B, for downward 
breakouts. Begin drawing the line 
from the start of the pattern on the 
top (point A), ending directly above 
the breakout point (D). The price 
directly above the breakout becomes 
the target.

The Numbers
Table 1 shows how often the 

measure rule works for popular chart 
patterns. For example, I looked at a 
database of the various combinations 
of Adam & Eve double bottoms and 
found 837 chart patterns that I tested 
against the measure rule prediction. 
The rule worked between 66% of 
the time in a bull market using data 
from 1991 to 2018 in as many as 1,100 
stocks, but not all stocks covered the 
entire period, and I excluded data 
from bear markets. That means price 
met or exceeded the target price 
before dropping at least 20% (a trend 
change, measured from the highest 
peak to the close) or a close below the 
lowest valley in the chart pattern.

Table 1. The table shows how often the measure 
rule works for various chart patterns and breakout 
directions.

Chart Pattern Upward 
Breakouts

Downward 
Breakouts

Double bottoms (all variations) 69% N/A

Double tops (all variations) N/A 45%

Head-and-shoulders bottoms 73% N/A

Head-and-shoulders tops N/A 58%

Triangles, ascending 70% 55%

Triangles, descending 73% 49%

Triangles, symmetrical 67% 44%

Triple bottoms 67% N/A

Triple tops N/A 48%

Wedge, falling 66% 32%

Wedge, rising 58% 46%

Notes: N/A means not applicable. All variations mean the four 
combinations of Adam & Eve shapes for peaks and valleys.

The table shows that price meets or exceeds the target better 
after an upward breakout than a downward one. For percentages 
below 50, use a projection that is half the height of the pattern. 
That will increase the probability that price will hit the target.

Closing Position
The measure rule is a tool used with chart patterns that 

suggests a price target. Typically, the height of the pattern is 
used in the computation. Add the height to upward breakouts or 
subtract it from downward ones to get a price target. For a more 
conservative (closer) target, use half the chart pattern height 
projected in the direction of the breakout.

Once you have a price target, look for nearby support or 
resistance zones. This may be round numbers (10, 15, 20, and 
so on), prior peaks and valleys, horizontal price consolidation 
regions, trendlines, and even other chart patterns. Often, price 
will stall at overhead resistance or underlying support as it 
nears the target price. Close out your position if price shows 
weakness or signs of reversing.

Copyright © 2005, 2018 by Thomas N. Bulkowski. All rights 
reserved. 

Figure 4. A symmetrical triangle uses the pattern’s height projected in the direction 
of the breakout to reach a target price, or a trendline parallel to the side opposite 
the breakout to get a target.
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Abstract
Traders may use leverage to scale up the returns and use stop 

orders to limit their losses. Typically used for controlling risk, 
stop-loss orders may actually increase long-run trading profit. 
This paper derives a criterion for maximizing long-run trading 
profit with respect to leverage and stop-loss order placement, as 
both may affect profitability. In a trading application, we study 
how stopping losses and leverage affects trading profit. We find 
empirical support that stop-loss order placement together with 
leverage can have a substantial effect on long-run profit.

Introduction
Long-run profit in trading requires that the trader have an 

edge (i.e., able to generate a positive average return) when 
trading the financial markets. When using technical analysis, 
the trader decides when to enter and exit the market following 
a strategy based on historic information (e.g., moving averages, 
moving average convergence divergence, relative strength 
indicator) or a combination of strategies (Katz and McCormick, 
2000, provide an overview of technical trading strategies). 
However, success in trading requires not only an edge, but the 
trader needs to also decide how many contracts to buy or sell 
in relation to the traders’ capital (i.e., leverage), and to decide 
if and when one should get out of a losing trade (i.e., stopping 
losses) (Tharp, 1997; Faith, 2003; Tharp, 2007). This paper 
studies how to optimally use leverage and stopping losses to 
maximize the long-run profit of a given edge.

Traders may use leverage to scale up the returns and increase 
trading profit. Leverage in trading means that a trader controls 
a larger nominal amount than the current value of his trading 
capital (e.g., Lundström and Peltomäki, 2018; Lundström, 2018). 
Leverage strategies for trading are sometimes denoted money 
management (Sewell, 2011 provides an overview of leverage 
strategies). Interestingly for traders, large leverage factors do 
not necessarily transfer to large profits in the long run. In fact, 
Kelly (1956) shows that there exists a unique level of optimal 
leverage that maximizes the long-run profit of a given edge, but 
also that leverage above the optimal level actually decreases the 
long-run profit (see also Vince, 1990). The intuition is that a too 
large leverage factor leads to severe drawdowns in capital that 
take too long to recover from.

The perhaps most famous strategy to decide how much 
leverage to use to maximize trading profit is the Kelly criterion. 
Introduced in Kelly (1956), applicable to games with binomial 
outcomes, the Kelly criterion maximizes the expected profit per 
trade with respect to the leverage factor, and is today part of 
the mainstream finance literature (e.g., Bodie et al., 2014). Thorp 
(1969) extends the binomial-outcome-criterion of Kelly (1956) 

on stock market and derivatives trading, where the returns 
approximately follow a continuous probability density function. 
Henceforth, we refer to the criterion of Thorp (1969) as the Kelly 
criterion. Rotando and Thorp (1992) study the empirical trading 
results from buying S&P 500 contracts at the start of the year 
and selling the same contracts at the end of the year. They 
find sizable long-run profit when applying the Kelly criterion 
(Rotando and Thorp, 1992). Based on the Kelly criterion, 
Lundström and Peltomäki (2018) show empirically how an 
optimal level of leverage can increase the long-run profitability 
of Exchange Traded Products equipped with embedded leverage.

The Kelly criterion is not the only optimal leverage criterion 
applicable to trading. Independent of the Kelly criterion, Vince 
(1990, 2011) suggests an alternative criterion for maximizing 
long-run trading profit: the Optimal f. This criterion maximizes 
the expected profit per trade with respect to the position size 
(the maximum fraction of capital the trader expects to lose in 
each trade) relative to the largest expected loss of the trading 
returns, and hence not the leverage factor per se (e.g., Vince, 
1990, 2011). This paper refers to it as the Vince criterion to avoid 
confusion. Anderson and Faff (2004) assess the profitability 
of the Turtle trading trend-following strategy made public in 
Faith (2003) in five futures markets reinvesting profits using 
the Vince criterion. They conclude that optimal leverage plays a 
more important role for the profitability in futures trading than 
previously realized, with large differences in profits depending 
on what leverage factor is applied (Anderson and Faff, 2004). 
Even if the Kelly and the Vince criteria typically are treated 
as essentially different leverage criteria in trading (see, for 
example, Vince, 2011), Lundström (2018) shows theoretically 
that the Kelly and Vince criteria produce identical profit when 
evaluated under the same assumptions.

Traders use stop orders to limit their losses (i.e., stop-loss 
orders). Stopping losses in trading is done by placing a buy (sell) 
order above (below) the market entry level for a short (long) 
position that will cover the position if the market moves a 
certain distance against the trader. We henceforth refer to this 
distance as the stop distance. The stop distance is typically set 
small enough to avoid large losses, if the trend reverses against 
the trader, but large enough to avoid whipsaws (i.e., a position 
is prematurely closed due to the volatility of the asset rather 
than a change in trend). Traders therefore typically set the stop 
distance based on some multiple of the volatility of the asset 
(e.g., Tharp, 1997; Williams, 1999; Faith, 2003; Anderson and 
Faff, 2004; Tharp, 2007). When based on historic information, 
we note that stopping losses can actually be viewed as a 
technical trading strategy in its own right. Stop-loss orders 
differ from trailing stop orders in that trailing stops are used to 
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lock in profits while stopping losses limit losses.
In academic studies, stop-loss orders are somewhat 

considered in the context of optimal order selection algorithms 
(e.g., Easley and O’Hara, 1991; Biais et al., 1995; Chakravarty 
and Holden, 1995; Handa and Schwartz, 1996; Harris and 
Hasbrouck, 1996; Seppi, 1997; Lo et al., 2002). In these studies, 
we note that the use of stopping of losses is generally explained 
as a mechanism for avoiding or anticipating pitfalls of human 
judgment. Shefrin and Statman (1985) and Tschoegl (1988) 
consider behavioral patterns that may explain the popularity of 
stop-loss orders as a risk-control technique.

Kaminski and Lo (2013) provide the first academic study on 
how stop-loss orders effect the returns and profit from trading. 
They show that stop-loss orders can actually increase the 
long-run profit of trading when the markets trend (i.e., when 
the returns follow [time series] momentum). The rationale is 
that if returns follow momentum, small losses tend to grow into 
larger losses, and by stopping losses before they grow large, the 
stop-loss should increase the expected return of trading in the 
long run. Kaminski and Lo (2013) find empirical support of an 
increase in the average return when stop-loss orders are added 
to a buy and hold strategy applied to monthly returns data for 
U.S. equity indices from January 1950 to December 2004.

Leverage and stop-loss orders are typically determined 
independent and separately from each other, the first motivated 
for increased profit and the second one motivated from a risk-
management perspective. For example, stop-loss orders are 
not explicitly modeled in the Kelly or Vince criteria. Since both 
leverage and stop-loss order placement may affect profitability 
when markets trend, we posit in this paper that leverage and 
stop-loss placement should be determined jointly.

This paper derives a criterion for maximizing long-run trading 
profit with respect to leverage and stop-loss order placement, 
as both may affect profitability. In a futures trading application, 
we study how various stop-loss order placements and optimal 
leverage affects trading profit when markets trend. We find 
empirical support that stop-loss order placement together 
with optimal leverage can have a substantial effect on profit. 
Further, we find the perhaps counterintuitive result that stops 
placed very close to the entry price increase long-run profit 
dramatically, even if it results in a large number of whipsaws. 
The findings of this paper suggest that traders may have a lot 
to gain from determining leverage and stop order placement 
jointly when markets trend, and that profit-maximizing traders 
should not necessarily be afraid of whipsaws.

We continue this paper by presenting the Kelly and Vince 
criteria and introducing stop-loss orders. The section after 
that describes the data and gives the empirical results. The last 
section concludes.

Leverage Strategies in Trading
Traders may use leverage to scale up the returns and increase 

trading profit. This paper models the returns and profit from 
trading as follows. Suppose that x denotes the return of a trade 
for a given trading strategy and is expressed as a percent. 
Following the standard assumptions in the optimal-leverage 
literature, assume that the trading returns are generated from 
a continuous probability density function ℎ(x) known to the 

trader (e.g., Thorp, 1969; Rotando and Thorp, 1992; Lundström, 
2018). Given these assumptions, the edge from trading can be 
written: 
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returns of each trade are reinvested, the wealth from trading is 
given by the function, 
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as follows: When applying a fixed leverage factor, θ > 0, on each 
trade i, the profit from trading can be illustrated as the trader’s 
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Throughout this paper, we refer to TWR and Gn 
interchangeably as profit. This simplifies the terminology 
and should cause no conceptual confusion since the latter is a 
monotonic transformation of the former. We now turn to the 
Kelly and Vince criteria to answer how much leverage a profit-
maximizing trader should use.

The Kelly Criterion
The Kelly criterion maximizes the expected profit per trade 

with respect to the leverage factor (Kelly, 1956). When the 
returns are continuously distributed, Thorp (1969), Rotando and 
Thorp (1992), and Lundström (2018) propose an expected profit 
per trade of:
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𝑎𝑎 ℎ(𝑥𝑥)𝑑𝑑𝑑𝑑 = 0. See Thorp, 1969, 

or Rotando and Thorp, 1992, for proofs. We note that 𝜃𝜃∗ > 0 as long as 𝜇𝜇 > 0, avoiding the 
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asymptomatically outperforms any other essentially different leverage strategy. Breiman 

(1961) also showed that the Kelly criterion minimizes the expected time it takes to reach a 

certain level of capital, which can be valuable to traders that experienced a severe drawdown 

and would like to use leverage to minimize the time to get back to the previous high.  

The implication of optimal leverage in trading is striking: that too small a 

leverage factor (𝜃𝜃 < 𝜃𝜃∗) leads to a lower long-term profit than is feasible, but also that too 

large a leverage factor (𝜃𝜃 > 𝜃𝜃∗) leads to a lower long-term profit than is feasible. The 

intuition is that a too large leverage factor leads to severe drawdowns in capital that take too 

long time to recover from. 

  

	 (3)

with a maximum at θ =  θ* when G' (θ*) = ∫a
b x (1 + θ* x)-1 h(x)dx = 0. 

See Thorp, 1969, or Rotando and Thorp, 1992, for proofs. We note 
that θ* > 0 as long as μ > 0, avoiding the uninteresting corner 
solution θ* = 0. We further note that G(θ) is increasing in μ (i.e.,

> 0, ceteris paribus) (see the discussion in Lundström and 
Peltomäki, 2018).

Using the Kelly criterion has many valuable properties for 
a trader. In the long run, Breiman (1961) showed that the Kelly 
criterion maximizes long-term growth and asymptomatically 
outperforms any other essentially different leverage strategy. 
Breiman (1961) also showed that the Kelly criterion minimizes 
the expected time it takes to reach a certain level of capital, 
which can be valuable to traders that experienced a severe 
drawdown and would like to use leverage to minimize the time 
to get back to the previous high.

The implication of optimal leverage in trading is striking: 
that too small a leverage factor (θ <  θ*) leads to a lower long-
term profit than is feasible, but also that too large a leverage 
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factor (θ >  θ*) leads to a lower long-term profit than is feasible. 
The intuition is that a too large leverage factor leads to severe 
drawdowns in capital that take too long time to recover from.

The Vince Criterion
The Vince criterion maximizes the expected profit per trade 

with respect to the position size (i.e., the maximum fraction 
of capital the trader expects to lose in each trade) relative to 
the largest expected loss of the trading returns (e.g., Vince, 
1990, 2011). To compare the profit of the Vince criterion to the 
Kelly criterion, we here illustrate the Vince criterion with the 
assumptions of this paper.

If we refer to fv as the position size, the expected profit per 
trade can be written as (see also Lundström, 2018):
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Since the Kelly and Vince criteria produce identical profit when evaluated under 
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position that will cover the position if the market moves a certain distance against the trader. 

We define the stop distance, 𝑠𝑠 < 0, as a negative return from the opening price of the 
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 (see Vince, 1990, 2011). Note that f *v  is 
always a fraction of capital as (0 < θ* <– 1/a) = (0 < f *v / ⎢a⎢ <–1/a)
and, by multiplying ⎢a⎢ throughout with , we obtain 0 < f *v < 1.

Since the Kelly and Vince criteria produce identical profit 
when evaluated under the same assumptions, it follows that: 
θ* =  f *v / ⎢a⎢ (for proof, see Lundström, 2018). However, since the 
position size adds information about the maximum expected 
loss per trade, we introduce stop-loss orders to the Vince 
criterion unless otherwise stated.

Introducing Stopping of Losses
Traders use stop-loss orders to limit their losses. Stopping 

losses in trading is done by placing a buy (sell) order above 
(below) the market entry level for a short (long) position 
that will cover the position if the market moves a certain 
distance against the trader. We define the stop distance, s < 0, 
as a negative return from the opening price of the position, 
expressed in percent, on the interval s ∈ [a,δ]. We consider 
the largest stop distance (least negative), δ, to be strictly 
negative for practical reasons (if δ = 0 we would stop all trades 
due to positive bid-ask spreads in applications), and we limit 
the smallest stop distance to (if s ≤ a, s is no longer a binding 
restriction on x).

When applying stop-loss orders placed a stop distance from 
the entry price, the trading returns equal s for stopped out 
trades, or x for surviving trades. The trader thereby restricts the 
maximum loss on every trade and censors the left tail of h(x) at 
s. In this paper, we assume that n is large, and we do not re-enter 
a stopped out position during the remainder of the trading 
period (both the Kelly and Vince criteria are long-run results 
based on a large number of trades).

Stopping losses mechanically at a certain distance from the 
entry price, as we do in this paper, resembles the classic filter 
rule of Alexander (1961). A filter rule buys X % from a previous 
low and sells X % from a previous high. Stopping losses at below 
entry price can be interpreted as an intraday filter rule sell 
signal from the opening price. For stop-loss orders to affect the 
expected return from trading, markets must trend (i.e., trading 
returns must follow [time series] momentum) (Kaminski and 
Lo, 2013). The argument is as follows: If markets trend, stopping 

a loss prematurely at level will arguably lead to a smaller loss 
on average than if the trade is left unrestricted and covered 
by the trading strategy. A smaller loss on average, but without 
affecting the winning trades on average, will translate into a 
larger expected return from trading. However, if asset prices 
are Brownian motions with zero drift, stopping losses will not 
affect the expected return from trading (e.g., Kaminski and Lo, 
2013).

Since both leverage and stop-loss order placement may affect 
profitability when markets trend, we posit that leverage and 
stop-loss placement should be determined jointly and propose a 
new criterion also taking stopping of losses into account.

A Criterion for Optimal Stopping of Losses
When applying stop-loss orders in trading, the leverage factor 

should ideally be constructed so that the losses from leveraged 
trading should be limited to the position size (e.g., Tharp, 1997; 
Faith, 2003; Tharp, 2007). In line with this reasoning, and 
inspired by the Vince criterion, this paper proposes a leverage 
factor on the interval s ∈ [a,δ] of
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where 𝑐𝑐 indicates censoring by a stop-loss and 𝑓𝑓𝑐𝑐 is the position size when stopping of losses 

is applied. 

When applying the leverage factor in Eq. (5), the leveraged trading returns are 
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𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛 = 𝑉𝑉𝑛𝑛
𝑉𝑉0

= (1 + 𝜃𝜃𝑐𝑐𝑠𝑠)𝑆𝑆 ∏(1 + 𝜃𝜃𝑐𝑐𝑥𝑥𝑖𝑖)
𝑛𝑛−𝑆𝑆

𝑖𝑖=1
= (1 − 𝑓𝑓𝑐𝑐)𝑆𝑆 ∏ (1 + 𝑓𝑓𝑐𝑐

|𝑠𝑠| 𝑥𝑥𝑖𝑖)
𝑛𝑛−𝑆𝑆

𝑖𝑖=1
                    (6) 

We can then write the expected profit of trade as: 

  𝐺𝐺(𝑓𝑓𝑐𝑐, 𝑠𝑠) = 𝐸𝐸 {1
𝑛𝑛 (𝑆𝑆 ln(1 − 𝑓𝑓𝑐𝑐) + ∑ ln (1 + 𝑓𝑓𝑐𝑐

|𝑠𝑠| 𝑥𝑥𝑖𝑖)
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)}                                                            

             = 𝐸𝐸 {𝑆𝑆
𝑛𝑛 ln(1 − 𝑓𝑓𝑐𝑐) + 𝑛𝑛 − 𝑆𝑆

𝑛𝑛
1

𝑛𝑛 − 𝑆𝑆 ∑ ln (1 + 𝑓𝑓𝑐𝑐
|𝑠𝑠| 𝑥𝑥𝑖𝑖)
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}                                      (7)       
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where c indicates censoring by a stop-loss and fc is the 
position size when stopping of losses is applied.

When applying the leverage factor in Eq. (5), the leveraged 
trading returns are 
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    = 𝑝𝑝(𝑠𝑠) ln(1 − 𝑓𝑓𝑐𝑐) + [1 − 𝑝𝑝(𝑠𝑠)] ∫ ln (1 + 𝑓𝑓𝑐𝑐
|𝑠𝑠| 𝑥𝑥)

𝑏𝑏

𝑠𝑠
ℎ(𝑥𝑥)𝑑𝑑𝑑𝑑                     

where 𝑝𝑝(𝑠𝑠) is the probability of stopped out trades and 1 − 𝑝𝑝(𝑠𝑠) is the probability of 

surviving trades.  

We obtain the profit maximum by maximizing the expected profit per trade (7) 

with respect to 𝑓𝑓𝑐𝑐 and 𝑠𝑠, subject to the constraint 𝑎𝑎 ≤ 𝑠𝑠 ≤ 𝛿𝛿. If 𝐺𝐺(𝑓𝑓𝑐𝑐, 𝑠𝑠) is differentiable as 𝑠𝑠, 

we obtain the maximum: 𝐺𝐺(𝜃𝜃𝑐𝑐
∗) at 𝜃𝜃 = 𝜃𝜃𝑐𝑐

∗ = 𝑓𝑓𝑐𝑐
∗ |𝑠𝑠∗|⁄ , when 𝐺𝐺𝑓𝑓(𝑓𝑓𝑐𝑐

∗) = 0 and 𝐺𝐺𝑠𝑠(𝑠𝑠∗) = 0, or at 

corner solutions 𝐺𝐺(𝑓𝑓𝑐𝑐
∗, 𝑎𝑎), 𝐺𝐺(𝑓𝑓𝑐𝑐

∗, 𝛿𝛿), given that 𝜇𝜇(𝑠𝑠) > 0 on the interval [𝑎𝑎, 𝛿𝛿]. Here, 𝐺𝐺𝑓𝑓 =

𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄  and 𝐺𝐺𝑠𝑠 = 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄ . If 𝐺𝐺(𝑓𝑓𝑐𝑐, 𝑠𝑠) is not differentiable as 𝑠𝑠, we may instead solve the profit 

maximum by using numerical methods (for numerical methods suitable for maximizing the 

profit with respect to the position size, see Vince, 1990). Conditional on 𝑠𝑠, we expect that the 

results of Breiman (1961) still hold for the stopping of losses criterion. 

The novelty of the stopping of losses criterion (7) compared to the Kelly and 

Vince criteria stems from the profit being maximized with respect to both the position size 

and the stop distance (here an endogenous variable), and not only with respect to the leverage 

factor or the position size. We note that 𝑓𝑓𝑐𝑐
∗ is always a fraction of capital as (0 < 𝜃𝜃𝑐𝑐

∗ < −1 ⁄

𝑠𝑠) = (0 < 𝑓𝑓𝑐𝑐
∗/|𝑠𝑠| < −1 ⁄ 𝑠𝑠) and, by multiplying throughout with |𝑠𝑠|, we obtain 0 < 𝑓𝑓𝑐𝑐

∗ < 1. 

As the profit (7) accounts for both the continuously distributed returns of the surviving trades 

and for the returns of the stopped out trades, it can be seen as a mixture of the Kelly criterion 

of Kelly (1956) and of the Kelly criterion of Thorp (1969). Further, the expected profit per 

trade (7) equals the Vince criterion expected profit per trade when 𝑠𝑠 = 𝑎𝑎:  

𝑝𝑝(𝑠𝑠) ln(1 − 𝑓𝑓𝑐𝑐) + [1 − 𝑝𝑝(𝑠𝑠)] ∫ ln (1 + 𝑓𝑓𝑐𝑐
|𝑠𝑠| 𝑥𝑥)

𝑏𝑏

𝑠𝑠
ℎ(𝑥𝑥)𝑑𝑑𝑑𝑑 = ∫ ln (1 + 𝑓𝑓𝑉𝑉

|𝑎𝑎| 𝑥𝑥)
𝑏𝑏

𝑎𝑎
ℎ(𝑥𝑥)𝑑𝑑𝑑𝑑 

since 𝑝𝑝(𝑠𝑠) = 0 when 𝑠𝑠 = 𝑎𝑎.  

where p(s) is the probability of stopped out trades and 1 – p(s)
is the probability of surviving trades.

We obtain the profit maximum by maximizing the expected 
profit per trade (7) with respect to fc and s, subject to the 
constraint a≤s≤δ. If G(f c,s) is differentiable as s, we obtain 
the maximum: G(θ*

c) at θ = θ*
c = (f *

c ⎜s*⎜), when Gf( f*
c ) =0 and 

Gs(s*) = 0, or at corner solutions G( f *
c ,a), G( f *

c ,δ), given that μ(s) 
> 0 on the interval [a,δ]. Here, Gf =    and Gs =  . If G( fc,s) is not 
differentiable as s, we may instead solve the profit maximum 
by using numerical methods (for numerical methods suitable 
for maximizing the profit with respect to the position size, see 
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Vince, 1990). Conditional on s, we expect that the results of 
Breiman (1961) still hold for the stopping of losses criterion.

The novelty of the stopping of losses criterion (7) compared 
to the Kelly and Vince criteria stems from the profit being 
maximized with respect to both the position size and the stop 
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c ,/|s|<-1⁄s) 
and, by multiplying throughout with |s|, we obtain 0 < f *
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the profit accounts for both the continuously distributed returns 
of the surviving trades and for the returns of the stopped out 
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(1956) and of the Kelly criterion of Thorp (1969). Further, the 
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of Kelly (1956) and of the Kelly criterion of Thorp (1969). Further, the expected profit per 

trade (7) equals the Vince criterion expected profit per trade when 𝑠𝑠 = 𝑎𝑎:  

𝑝𝑝(𝑠𝑠) ln(1 − 𝑓𝑓𝑐𝑐) + [1 − 𝑝𝑝(𝑠𝑠)] ∫ ln (1 + 𝑓𝑓𝑐𝑐
|𝑠𝑠| 𝑥𝑥)

𝑏𝑏

𝑠𝑠
ℎ(𝑥𝑥)𝑑𝑑𝑑𝑑 = ∫ ln (1 + 𝑓𝑓𝑉𝑉

|𝑎𝑎| 𝑥𝑥)
𝑏𝑏

𝑎𝑎
ℎ(𝑥𝑥)𝑑𝑑𝑑𝑑 

since 𝑝𝑝(𝑠𝑠) = 0 when 𝑠𝑠 = 𝑎𝑎.  since  p(s) = 0 when s = a.

To study how much more profit a trader stands to gain by 
using the stopping of losses criterion relative to the Kelly or 
Vince criteria, we compare profit levels for different values of s, 
given their optimal position sizes.

If we denote G( f *
c|s,s) the maximum profit conditional on s ( f *

c 
is the optimal leverage factor conditional on s), we are able to 
study the difference in maximum profit between using s* and an 
arbitrary stop distance, s, by comparing maximum profit levels 
G( f *

c,s* ) with G( f *
c|s,s). The profit level G( f *

c |s,s) here illustrates 
the maximum profit levels in terms of optimal leverage 
for all other levels of s than s*. For example, the quotient 

then measures the relative profit from using 
the optimal stop distance instead of an arbitrary stop distance, 
where Π(s)>1 indicates a positive profit by applying optimal 
stopping of losses, and where Π(s)=1 indicates no relative profit. 
That is, the measure Π(s) “isolates” the stopping of losses effect 
on maximum profit from the optimal leverage effect. 

However, to get an idea of how much more profit a trader 
stands to gain by using the stopping of losses criterion relative 
to the Kelly or Vince criteria when markets trend, we must 
turn to empirical estimation. This brings us to the trading 
application.

Trading Application
We estimate the empirical profit when adding optimal 

leverage and stop-loss orders to a buy and hold strategy. We 
note that the buy and hold strategy is used as a benchmark 
strategy when estimating the empirical trading profit when 
trading with optimal leverage, as in Rotando and Thorp (1992), 
but also when trading with stop-loss orders, as in Kaminski and 
Lo (2013), making it a suitable candidate.

The effect on trading profit from applying optimal leverage, 
as documented in Kelly (1956), Breiman (1961), and others, are 
asymptotic results (when n → ∞), and we therefore need a large 
number of trade observations for accurate profit estimations. By 
adding stop-loss orders, we need an even larger number of trade 
observations. This is because stop-loss orders censor the trades 

reaching sometime during the lifetime of the position, thereby 
reducing the number of trade observations used to estimate 
h(x). Rotando and Thorp (1992) estimate profit based on annual 
returns and Kaminski and Lo (2013) on monthly returns. For 
example, with an annual holding period from 1926 to 1984, the 
empirical results of Rotando and Thorp (1992) are based on a 
total of 59 trades. This paper therefore suggests a buy and hold 
strategy based on daily returns on long time series, buying on 
the open and selling on the close.

Data
Stopping losses may increase the expected return of trading, 

but only when the markets trend. The challenge of this paper is 
to find long times series of actually traded futures contracts of 
markets that trends intraday (i.e., display intraday momentum). 
Further, to accurately estimate the effect of stopping losses 
on profit, not only do we need daily price observations of open 
and close, but also intraday price readings to verify if the stop 
distance was exceeded sometime during the trading day.

To meet this challenge, we use the same data of S&P 500 stock 
market index futures contracts and crude oil futures contracts 
as in Lundström (2019) for assessing the (unleveraged) 
profitability of the Opening Range Breakout (ORB) strategy. The 
ORB strategy profit is based on intraday momentum, and since 
Lundström (2019) find empirical support of positive average 
ORB returns after costs, we infer that both markets contain 
momentum.

The S&P 500 price series covers the period April 21, 1982, 
to November 29, 2010, and the crude oil price series covers 
the period January 2, 1986, to January 26, 2011. The series is 
obtained from Commodity Systems Inc. (CSI) and is delivered 
in the format: open, high, low, and close of daily price readings 
of actually traded futures contracts. We analyze these series 
separately and independently of each other.

We assess the return of trading day i by: xi = closei/openi -1, μ 
by x = n-1 ∑ xi, and use a = min(xi).

Table 1 shows some descriptive statistics.

Table 1. Descriptive Statistics of the Return Series

Obs. Std.Dev Min Max Skewness Kurtosis

S&P 
500

7218 0.0001 0.0081 -0.0912 0.0808 -0.1508 17.35

crude 
oil

6264 0.0001 0.0093 -0.0736 0.0742 -0.1160 8.45

Table 1 shows that the average returns, x, are small, albeit 
positive. We note that small means close to zero, and positive 
kurtosis are typical results for empirical returns series (e.g., 
Cont, 2001). The number of observations (Obs.) is considerably 
higher than the 59 observations used in the study of Rotando 
and Thorp (1992). This paper interprets (Min) as the most 
negative trading return for each asset. As in Vince (1990, 
2011), represents the minimum holding period return, not the 
minimum intraday return.

Stopping losses censors trades equal to the level of stop 
distance, , sometime during the trading day. Inspired by the 
approach used in Lundström (2019), we assess the returns 
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of an intraday trading strategy using the information of 
the open, high, low, and close of daily price data. This paper 
assesses the returns when trading with a stop-loss by:  

 and , where 
represents the lowest intraday return during trading day i. That 
is, if the lowest intraday return reaches the stop distance, we 
know that the stop-loss order is executed sometime during the 
trading day.

Estimating Profit
From Lundström (2018) we know that the Kelly and Vince 

criteria by Eq. (2) and (3) yield identical profitability, and we 
therefore only report the empirical results of the Vince criterion 
if not otherwise stated. When applied to long time series of daily 
data, this paper estimates the expected profit per trade of the 
Vince criterion Eq. (4) by its sample mean:

 , 

and the stopping of losses criterion Eq. (7) by its sample mean: 

, 

where we use p(s).

For the stopping of losses criterion, we estimate maximum 
profit conditional on s; G( fc

*⎟s), by calculating a number of 
values of its sample mean Gn( fc⎟s) for different values of fc over 
the discrete valued fc ∈ (0, 0.0025, 0.0050, …, 0.9975) domain 
of for a given s. We then q : th  fit a degree polynomial, G( fc⎟s), 
based on these calculated values, to estimate the functional 
form of G( fc⎟s) with respect to fc given s. We use tilde ~ and drop 
the subscript n for notational convenience, when we refer to the 
estimated polynomial. With the data at hand, we apply the step 
size of 0.25 percentage units in fc, as we find it small enough to 
generate a graphically “smooth” functional form G

~
 with respect 

to fc without apparent corners. As the polynomial fit is local, we 
consider only positive values of Gn( fc⎟s) > 0. As the polynomial  
G

~
 is differentiable in fc, we then analytically solve for the  fc

*
 that 

maximizes G
~
( fc⎟s). By inserting  fc  into the original function, 

Gn( fc
*⎟s), we finally obtain the maximum profit level conditional 

on . We use Ordinary Least Squares (OLS) estimators for the 
polynomial regressions.

For the Vince criterion, we calculate a number of values of 
Gn( fv) over the same discrete valued domain as we used before: fv 
∈ (0, 0.0025, 0.0050, …, 0.9975). To estimate the functional form 
of G( fv) with respect to fv, we fit q : th a degree polynomial, G̃( fv), 
based on the calculated values of Gn( fv). We then analytically 
solve for the fv

* that maximizes G̃( fv) and by inserting  fv
* into the 

original function, G( fv), we obtain the profit maximum: Gn( fv
*).

However, Gn( fc
*⎟s) gives only one value of maximum profit 

for a given level of s. By collecting the maximum profit levels 
for each level of s over the discrete valued domain: s ∈ {a,…, δ} 
we can discern how maximum profit behaves in the dimension: 
Gn( fc

*⎟s,s). To simplify, we write: π(s) = Gn( fc
*⎟s,s). To study how 

maximum profit behaves in the s dimension, we estimate the 
functional form of π(s) by fitting a q : th degree polynomial,  
~π(s) , based on the calculated values of maximum profit levels 

Gn( fc
*⎟s,s) obtained for each s. We expect to find the (global) 

maximum profit G( fc
*,s* ) when the function π(s*) attains its 

maximum on the interval s ∈ [a,δ].
From the (Min) of x from Table 1, we set the most negative 

trading return to a=−0.0912 and a=−0.0736 for S&P 500 and 
crude oil, respectively. We set δ = –0.005 to limit the largest 
(least negative) stop distance for both the S&P 500 and crude 
oil time series. We argue that δ = –0.005 are reasonable levels 
as they are narrow enough to stop out more than one third of all 
trades but still wide enough to account for temporary large bid-
ask spreads during volatile market periods, for both assets. We 
apply a step size of 0.5 percentage units in s as we find it small 
enough to generate a graphically “smooth” functional form of  
~π(s) with respect to without apparent corners.

Empirical Results
We estimate π(s) with a third-degree polynomial for 

both assets (q=3). For the S&P 500, we obtain:  ~π(s) = 
0.0008 + 0.1027s + 5.3368s2 + 96.58s3, with R2=1.00. For crude oil, 
we obtain: s=0.0009 + 0.1208s + 5.8416s2 + 98.56s3, with R2= 1.00. 
Calculations show that both polynomials   ~π(s)  are strictly 
increasing in s;  ~π'(s) >0, with (corner solution) profit maxima;  
~π(−0.005), at s=s*= −0.005 for both assets, respectively.

Calculations show that we obtain maximum profit at for both 
assets. When trading S&P 500, we obtain the profit maximum at 

= 5.22, yielding the TWR = 18.40, which is ∏ = 8.33 times 
the profit of the Vince criterion without stops. When trading 
crude oil, we obtain the profit maximum at  = 5.00, 
yielding the TWR = 17.77, which is ∏ = 11.85 times the profit of 
the Vince criterion without stops. This shows that considerable 
relative profits can be made if the trader combines optimal stop 
distances with optimal leverage, relative to optimal leverage 
without stops, for both assets.

Table 2 summarizes the empirical results for four levels of s, 
including the unconstrained maximum for s = s* =δ. The results 
of the Vince criterion are presented in the first row for each 
asset, respectively. As a reference to the results of Kaminski and 
Lo (2013), we also present the trading profit without leverage 
(using θ = 1). Figures 1 and 2 present the accumulation of wealth 
(in log scale) over time for traders using the stopping of losses 
criterion and the Vince criterion, applied to S&P 500 futures and 
to crude oil futures, respectively. As a reference, we also present 
the wealth accumulation over time for a trader who instead 
bought and held the underlying asset without leverage.

In Table 2, the ⎟s⎟ is the absolute value of the stop distance, 
and p(s) gives the frequency of stopped out trades. The π(s) gives 
the average returns, and s.e. the associated standard errors. 
The polynomial fit is optimized using OLS, where f * gives the 
optimal fraction of the polynomial, the q gives the degree of the 
polynomial, the R2 is the goodness of fit measure, and θ* =   is 
the optimal leverage factor. The TWR and TWR* give the profit 
when θ = 1 and  θ = θ*, respectively. The ∏(s) gives the relative 
profit if traders instead use the optimal stop distance. We use 
the notation of (−) to illustrate the results when applying the 
Vince criterion.

Table 2 shows that the average returns, μ(s), are small, 
albeit positive. When trading without leverage (using θ=1), we 
find only moderate positive effects on profit, yielding at most 
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roughly 100 percent, and increase in TWR when applying stop-
loss orders, for both assets. Table 2 also shows that profits are 
substantially increased when we combine optimal leverage 
factors with the stop distances, especially for the “aggressive 
stops,” with small stop distances only fractions of the return 
standard deviations. Thus, stops placed very close to the entry 
price increase long-run profit dramatically when markets trend, 
even if it results in a large number of whipsaws. These findings 
suggest that traders may have a lot to gain from determining 
leverage and stop order placement jointly when markets trend, 
and that profit maximizing traders should not necessarily be 
afraid of whipsaws.

Regarding the results of the Vince criteria, the careful reader 
may note that Gn(θ*

v) ≥ Gn(θ*
c) at s = a in Table 2. These are not 

calculation errors, but because a is based on min(xi), not min(li), 
where min(xi) ≥ min(li), so that stopped out trades at a always 
recover to x ≥ a in the end. This effect still lingers for stop levels 
relatively close to a, which explains the minor drop in TWR at 
s =–0.02 for both assets.

Figure 1. Wealth over time expressed in log levels when 
trading S&P 500 futures using the stopping of losses 
criterion (SoL) and the Vince criterion (Vince), both 
starting with $1 million USD, from April 21, 1982, to 
November 29, 2010. B&H refers to the profit from the buy 
and hold strategy. Trading costs are not included.
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Figure 2. Wealth over time expressed in log levels when trading crude oil futures using 
the stopping of losses criterion (SoL) and the Vince criterion (Vince), both starting with 
$1 million USD, from January 2, 1986, to January 26, 2011. B&H refers to the profit 
from the buy and hold strategy. Trading costs are not included. 

 

 

Figures 1 and 2 graphically illustrate that wealth accumulates quickly over time 

when combining optimal leverage factors with stop-loss orders but with very high volatility. 
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Figure 2. Wealth over time expressed in log levels when 
trading crude oil futures using the stopping of losses 
criterion (SoL) and the Vince criterion (Vince), both 
starting with $1 million USD, from January 2, 1986, to 
January 26, 2011. B&H refers to the profit from the buy 
and hold strategy. Trading costs are not included.
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Figures 1 and 2 graphically illustrate that wealth accumulates 
quickly over time when combining optimal leverage factors 
with stop-loss orders but with very high volatility. We see 
that wealth levels from applying the stopping of losses (SoL) 
criteria substantially outperform the wealth levels from 
applying the Vince criteria (Vince) as well as the buy and hold 
(B&H) strategies, for both assets. Further, it appears that the 
outperformances of the SoL criteria are reasonably constant 
over time, suggesting that outliers of a few but extreme 
observations do not drive the results.

To verify positive outperformances, we also test the 
significance of the holding-period-returns for each calendar 
year. We calculate the criteria return of year k by: retk = TWRk –1, 
starting at the beginning of the calendar year and ending at 
year end. Each year consists of roughly k = 240 trades. We then 
estimate the average outperformance over time by the regression:

retk = ret * 1 + vk	 (8)

Table 2. Empirical results

θ = 1 θ = θ*

⎜s⎜ p(s) π(s) s.e. TWR f* q R2 θ* TWR* ∏(s)

S&P 500

- 0.00 0.0001 0.0001 1.88 0.160 2 0.99 1.75 2.21 8.33

0.020 0.03 0.0001 0.0001 1.78 0.039 2 0.99 1.93 2.12 8.68

0.015 0.06 0.0001 0.0001 1.91 0.034 2 0.99 2.27 2.56 7.19

0.010 0.13 0.0001 0.0001 2.27 0.028 4 1.00 2.80 4.42 4.16

0.005 0.31 0.0002 0.0001 2.72 0.026 4 1.00 5.22 18.40 1.00

⎜s⎜ p(s) π(s) s.e. TWR f* q R2 θ* TWR* ∏(s)

crude oil

- 0.00 0.0001 0.0001 1.48 0.089 2 1.00 1.21 1.50 11.85

0.020 0.05 0.0001 0.0001 1.45 0.026 2 1.00 1.32 1.48 12.01

0.015 0.08 0.0001 0.0001 1.68 0.026 2 0.99 1.73 1.87 9.50

0.010 0.16 0.0002 0.0001 2.20 0.024 4 1.00 2.42 3.67 4.84

0.005 0.37 0.0002 0.0001 2.83 0.025 4 1.00 5.00 17.77 1.00
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where ret estimates the average outperformance and vp,t is the 
random error term.

To assess the statistical significance of regression (8), we 
apply Ordinary Least Squares (OLS) estimation using Newey-
West Heteroscedasticity and Autocorrelated Consistent (HAC) 
standard errors, as trading strategy returns could possibly 
experience serial correlation. Table 3 shows the results.

Table 3. Profitability test when trading with  =  * 

SoL Vince B&H SoL-
Vince

SoL-
B&H

Vince-
B&H

ret 0.16*** 0.04 0.03 0.12*** 0.13*** 0.01

S&P 
500

s.e. 0.06 0.03 0.02 0.06 0.06 0.01

Obs. 28

SoL Vince B&H SoL-
Vince

SoL-
B&H

Vince-
B&H

ret 0.30*** 0.04 0.03 0.26*** 0.27*** 0.01

crude 
oil

s.e. 0.14 0.04 0.04 0.12 0.12 0.01

Obs. 24

In Table 3, the ret is the average TWR – 1 for each year and 
s.e. the Newey-West HAC standard errors. SoL is the stopping 
of losses criterion, Vince is the Vince criterion, and B&H is the 
buy and hold strategy. SoL-Vince, SoL-B&H, Vince-B&H are the 
differences in the average annual TWR between the criteria. The 
asterisks *, **, and ***, refer to statistical significance at the 10%, 
5% and 1% levels.

Table 3 shows that the stopping of losses criteria produces 
annual returns significantly larger than zero in both absolute 
terms (SoL) and in relative terms against the Vince criteria 
(SoL-Vince) and the buy and hold strategies (SoL-B&H), for both 
assets. Table 3 also shows that the buy and hold strategies (B&H) 
and the Vince criteria (Vince) do not generate significantly 
larger returns than zero for either asset. Further, even if profits 
increase somewhat when using the Vince criteria (see Table 2), 
Table 3 illustrates that the Vince criteria do not produce annual 
returns significantly larger than the returns of the buy and hold 
strategies (Vince-B&H) for either asset.

Sensitivity Analysis Regarding Trading Cost and 
Price Jumps

Up to this point, we have assumed zero trading costs and 
no slippage. Calculations show that taking trading costs into 
account would unfortunately decrease the average returns of 
our buy and hold strategy to below zero, leading to trivial results 
when applying leverage. Focusing here on the relative profit 
between criteria, stopping losses without re-entry does not 
generate more trades than the Vince criterion. Thus, we expect 
that adding costs does not alter the relative profit differences 
reported in this paper in any significant way.

Admittedly, lack of liquidity and possible price jumps 
resulting in slippage will consume some of the trading profits 
of the SoL criterion relative to the Vince criterion, as stop 

orders are not necessarily executed at the predetermined level 
s. Given the high level of liquidity during U.S. market trading 
hours for the assets studied in this paper, we expect price jumps 
to be relatively small. We consider here a reasonable estimate 
of 2 basis points when trading S&P 500 and crude oil futures 
(Empirical observations when trading futures contracts using 
an account size of around $1 million USD (Interactive Brokers, 
www.interactivebrokers.com, February 2, 2010 to November 
29, 2010). Given an optimal stop level of s = –0.005, price jumps 
would then, on average, delay the position exit to s = –0.0052 for 
stopped out trades. Aware of the average level of price jumps, 
the trader then adjusts the optimal fraction correspondingly, 
and from the polynomials, ~π(s), we obtain a reduced profitability 
of TWR*  = 17.51 when trading the S&P 500 and TWR*  = 13.53 when 
trading crude oil, when s = –0.0052. Although reduced, there 
still remain considerable levels of profitability relative to the 
existing criteria for both assets.

Concluding Discussion
This paper derives a criterion for maximizing long-run 

trading profit with respect to both leverage and stop-loss order 
placement based on the Kelly and Vince criteria. In a trading 
application, we study how various stop-loss order placements 
affect the long-run trading profit, given optimal leverage levels 
when markets trend.

When combining stopping losses with optimal leverage, we 
find a maximum difference of profits of 8 and 12 times relative 
to the Vince criterion when trading S&P 500 futures and crude 
oil futures, respectively. This suggests that stopping losses 
together with optimal leverage can have a substantial effect on 
long-run profit. Further, we find the perhaps counterintuitive 
result that stops placed very close to the entry price increase 
long-run profit dramatically, even if it results in a large 
number of whipsaws. The findings of this paper suggest that 
traders may have a lot to gain from determining leverage and 
stop order placement jointly when markets trend, and that 
profit maximizing traders should not necessarily be afraid of 
whipsaws.

By using the full sample of observations to calculate the 
returns of the trading strategy, we assume that the trader 
a priori knows the returns probability density function when 
applying leverage. This can be seen as a limitation to this study 
as we may oversimplify the complexity of actual trading out-
of-sample as possibly nonstationary processes of prices are 
involved. However, as we evaluate the Vince criterion based 
on the same assumption, we expect the large relative profit 
difference between the stopping of losses and Vince criteria to 
remain relatively unchanged if we were to trade out-of-sample.
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Abstract
The Dow Theory is not, as generally taken for granted by 

many people, just a simple technical analysis theory. Nor is it 
a mere momentum strategy, as suggested by some financial 
pundits. It is in reality a system of scientific thoughts on the 
stock market encompassing the stock market functions, the 
stock market pricing mechanism, and the stock price behavior 
and investment strategies, along with other important issues 
associated with the stock market.

In essence, the Dow Theory constitutes the judgement on the 
stock market pricing. The core implications of the Dow Theory 
are divisible into three parts, viz. the Dow Theory judgements 
on the stock market pricing, the stock market functions, and 
the stock price behavior, respectively. Among these three 
components, the Dow Theory judgements on the stock market 
pricing and the stock market functions are considered to be the 
real quintessence of the Dow Theory.

Introduction
This is the business of the stock market. It has to consider both 

basic values and prospects...In the long run, values make prices.
—— Charles H. Dow and William Peter Hamilton

The purpose of this research paper1  is to draw the attention 
of the financial academic circles, the financial investment 
management circles, and the technical analyst industry to the 
latest research results of the Dow Theory on the part of the 
present author. At the same time, the author wishes to appeal 
to the financial academic circles, the financial investment 
management circles, and the technical analyst industry to 
launch a review of the scientific connotations of the Dow Theory 
so that a renewed reinterpretation of the theory can be made.

The present paper uses The Stock Market Barometer, by 
William Peter Hamilton, as the main object of analysis with The 
Dow Theory, by Robert Rhea, and The ABC of Stock Speculation, 
by S. A. Nelson, as the supporting objects of analysis.2  For the 
sake of convenience and avoidance of ambiguity, this paper shall 
refer the foregoing The Dow Theory by William Peter Hamilton as 
the Dow Theory or Hamilton version of the Dow Theory, and The 
Dow Theory by Robert Rhea as Rhea version of the Dow Theory. 
The conclusion of this paper outlines the following:

(i) From the point of the view of the content, the Dow 
Theory is not, as generally taken for granted by many people, 
just a simple technical analysis theory. Nor is it a mere 
momentum strategy as endorsed by some financial scholars.3  
It is in reality a system of scientific thoughts on the stock 
market encompassing the stock market functions, the stock 
market pricing mechanism, and the stock price behavior and 

investment strategies, along with other important issues 
associated with the stock market. The technical analysis theory 
and momentum strategy only constitute part of the Dow Theory 
judgement on the stock price behavior.

(ii) In essence, the Dow Theory constitutes the judgement 
on the stock market pricing. The core implications of the Dow 
Theory can be divided into three parts, viz. the Dow Theory 
judgement concerning the stock market pricing, the Dow Theory 
judgement on the stock market functions, and the Dow Theory 
judgement on the stock price behavior. Among these three parts, 
the Dow Theory judgements relating to the stock market pricing 
and the stock market functions constitute the real quintessence 
of the Dow Theory.

(iii) From the standpoint of importance, the most important 
and quintessential parts of the Hamilton version have not been 
handed down by the Rhea version—effectively amounting to a 
loss of communication. Currently, the Dow Theory that we have 
access to is the Rhea version of the Dow Theory, which is based 
on a deletion and systematic integration of the Hamilton version 
of the Dow Theory. From a content point of view, the Rhea 
version amounts to roughly 50% of the Hamilton version.

This paper is arranged in the following way: apart from the 
Introduction dealing with an overview of the paper, subsequent 
sections delve into the scientific thoughts on the stock market 
functions associated with the Dow Theory; an examination of 
the assertions of the Dow Theory concerning the stock price 
behavior and Rhea version of the Dow Theory; an analysis of the 
scientific connotations and weaknesses of the Dow Theory; and 
concluding remarks on the paper.

Scientific Thoughts of the Dow 
Theory on the Stock Market 
Functions

The Dow Theory is not, as generally taken for granted by 
many people, just a simple technical analysis theory. Nor is 
it a mere momentum strategy as endorsed by some financial 
scholars. It is in reality a system of scientific thoughts on the 
stock market encompassing the stock market functions, the 
mechanism of the stock market pricing, and the stock price 
behavior and investment strategies, along with other important 
issues associated with the stock market.

Assertions of the Dow Theory Concerning the Stock 
Market Pricing Mechanism

In substance, the Dow Theory provides assertions and 
judgements on the stock market pricing. The core implications 
of the Dow Theory can be divided into three parts, viz. the Dow 
Theory judgement on the stock market pricing, the Dow Theory 
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judgement on the stock market functions, and the Dow Theory 
assertions on the stock price behavior. Among these three parts, 
the Dow Theory judgements on the stock market pricing and 
stock market functions constitute the real quintessence of the 
theory.

The Mechanism of the Stock Market Pricing
[Hamilton-page-8] writes: “the price movement represents 

the aggregate knowledge of Wall Street and, above all, its 
aggregated knowledge of coming events...; The market 
represents everything everybody knows, hopes, believes, 
anticipates.”

[Hamilton-page-127] Explains: “The market movement 
reflects all the real knowledge available, and every day’s trading 
sifts the wheat from the chaff. If the resultant showing of grain 
is poor, the market reflects the estimate of its value in lower 
prices. If the winnowing is good, prices advance long before the 
most industrious and up-to-date student of general business 
conditions can bushel up the residue and set it forth in his 
pictorial chart.”

[Hamilton-page-182] further explains: “It has been said 
before that the stock market represents, in a crystallized form, 
the aggregate of all American knows about its own business, 
and, incidentally, about the business of its neighbors. When a 
man finds his jobbing trade or his factory showing a surplus he 
tends to invest that surplus in easily negotiable securities. If 
this improvement is general it is all reflected and anticipated 
in the market, for he can buy in July and carry on ample margin 
what he knows he can pay for outright when he divides profits 
at the end of the year. He does not wait till the end of the year, 
because he realizes that the knowledge he possesses in July will 
by that time have become common property, and will have been 
discounted in the price.”

The Pricing Basis and Pricing Process of the Stock Market
[Hamilton-page-88-90] writes: “All adjustments of the 

prices of these stocks individually must primarily be based 
upon values. For all practical purposes the Stock Exchange is 
an open market, and the business of such a market is to adjust 
conflicting estimates to a common basis which is expressed in 
the price...The stock market does not make its adjustment in a 
day. But over a period...This is the business of the stock market. 
It has to consider both basic values and prospects...At the 
close of a major downward movement, a primary bear market, 
prices will have passed below the line of values...Conversely, a 
bull market starts with stocks much below their real values, 
certain to be helped in anticipation by the general improvement 
in the country’s business which the stock markets foresee 
and discounts. In the long advance values will be gradually 
overtaken.”

[Hamilton-page-92] explains in the following way: “Every 
scrap of intelligence and knowledge available, uninfluenced in 
any real degree by manipulation, has been brought to bear in 
the adjustment of the stock market prices. Reproduction value, 
real estate value, franchises, right of way, good will—everything 
else—have been brought into the free-market estimate in a way 
which no valuation committee appointed by Congress could 
ever attain...But the Stock Exchange price records the value 

from day to day, from month to month, from year to year, from 
bull market to bear market, from one of Jevons’s cycle dates to 
another.

[Hamilton-page-99] asserts in a remarkable way: “In the long 
run values make prices.”

The Dow Theory Points Out That the Investor Should Base Their 
Understanding of the Stock Price Behavior on the Stock Value 
and Take Their Investment Decisions Accordingly

[Hamilton-page-75] writes: “But it is a vital mistake to 
suppose that speculation in stocks (for the rise at least) is a sort 
of gamble in which no one can win unless there is an equivalent 
loss somebody else. There need be no such loss in a bull market.”

[Hamilton-page-38] indicates: “The best way of reading the 
market is to read from the standpoint of values. The market is 
not like a balloon plunging hither and thither in the wind. As 
a whole, it represents a serious, well-considered effect on the 
part of far-sighted and well-informed men to adjust prices to 
such values as exist or which are expected to exist in the not 
too remote future...” In reading the market, therefore, the main 
point is to discover what a stock can be expected to be worth 
three months hence and then to see whether manipulators or 
investors are advancing the price of that stock toward those 
figures. It is often possible to read movements in the market 
very clearly in this way. To know value is to comprehend the 
meaning of movements in the market”.

The assertions of the Dow Theory concerning the stock 
market pricing brought to light the following:

First and foremost, the most fundamental function of the 
stock market is to make reasonable pricing for the stocks based 
on all available information on hand, and that is known as the 
pricing function of the stock market. The economic barometer 
and price discovery functions touched on in the following 
sections of this paper are based on the pricing function of the 
stock market.

Secondly, the assertion of the Dow Theory concerning the 
stock pricing hinges on a key assumption or, in other words, the 
ideal market environment, making possible the assertion of the 
Dow Theory concerning the stock pricing is in a free, complete  
and ratio-of-stocks-well-distributed stock market, wherein 
changes in the economy are reflected quickly in the changes of 
the stock price, the stock pricing will truly reflect changes in the 
basic factors and market expectations.

Third, the stock pricing is based on two factors in the 
stock market, viz. the basic value of the stock and market 
expectations. The Dow Theory asserts that “in the long run 
values make prices. 4 That is to say, the Dow Theory believes 
that, in the relatively long-term stock pricing, the basic value 
of the stock is the determining factor of its pricing, with the 
basic value of the stock being more important than the market 
expectations.

As to how to evaluate the basic value of the stock, Nelson’s 
work has drawn references from the Dow Theory to advance 
the following statement, although the Dow Theory has not 
elaborated on how to measure the market expectations.

According to [Nelson, Page 47–48]: “Value is determined by 
the margin of safety over dividends, the size and tendency of 
earnings: the soundness of the balance sheet and of operating 
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methods, and general prospects for the future. This sounds 
rather complicated but is not especially difficult to work out.

For instance, a year ago we almost daily pointed out that 
earnings had greatly increased during the year past; the fixed 
charges had not increased, hence, the actual value of stocks had 
advanced while prices had in almost all cases declined. It was 
obvious that this could not last; that net earnings must decrease 
or prices advance. There were many stocks cheap on their 
earnings and this was easily a matter of demonstration...

In the long run, the prices of stocks adjust themselves to the 
return on the investment, and while this is not a safe guide at all 
times, it is a guide that never should be laid aside or overlooked. 
The tendency over a considerable length of time will always be 
toward values. Therefore, the outsider who by studying earning 
conditions can approach a fairly correct idea of value has a guide 
for his investments which will, as a whole, be found safe.”

Lastly, the stock pricing cannot realistically be completed 
in a day but takes several days or even longer to complete. In 
fact, the Dow Theory divides stock pricing into three distinctive 
kinds, viz. daily pricing, secondary trend pricing, and primary 
trend pricing. In other words, the Dow Theory prescribes three 
kinds of stock pricing: short-term stock pricing, mid-term stock 
pricing, and long-term stock pricing. The focal point of the Dow 
Theory lies in the primary trend stock pricing, viz. the long-term 
stock pricing, as the former two kinds of stock pricing could be 
manipulated according to the Dow Theory.

Stock Market Pricing and Stock Price Manipulation
Based on the influences of the investor behavior on the stock 

market pricing, the Dow Theory divides the stock market 
participants into five categories, viz. speculator, investor, stock 
manipulator, financial institution, and government. Based on 
the Dow Theory, participants in the stock market pricing should 
only include the former four categories of investors, and the 
government should not exert any influences on the stock market 
pricing.

In light of the different nature of influences exerted by 
investor behavior on the stock market pricing, we can discover 
that the stock market speculator and investor are the price 
taker of the stock market pricing. The stock manipulator and 
financial institution are the recipient of the stock market 
pricing whilst, at the same time, they are price makers of the 
stock market pricing. The government is the pure stock price 
maker. In the former four categories of investors, the stock 
manipulators and financial institutions are the price takers of 
the stock market pricing and, at the same time, they are the 
price makers of the stock market pricing. As a result, the actual 
stock market pricing could be manipulated.

Due to the stock manipulator and financial institution being 
only able to manipulate individual stocks instead of all the 
stocks or, in other words, the entire stock market, plus the 
stock manipulator and financial institution being incapable 
of manipulating the stocks all the time, we should not find it 
difficult to understand why the Dow Theory claims that the 
stock market daily variance and secondary trend could be 
manipulated but that the primary trend of the stock market 
could not be manipulated.

The key link in the Dow Theory specifying that the stock 

market primary trend could not be manipulated is based on 
the assumption that the government should not exert any 
influences on the stock market pricing. Per the Dow Theory, 
government as the price maker of the stock market pricing 
should have zero influences on the stock market pricing in terms 
of contribution. This key assumption constitutes the premise 
and basis for the effective operation of the Dow Theory. For this 
reason, the Dow Theory creators warn us the following:

[Hamilton-p-218] writes: “If there is one lesson which should 
have been burned in upon the public mind in the past decade, 
it is that when government interferes with private enterprise, 
even where that enterprise is directed to the development of a 
public utility, it can do incalculable harm and very little good.”

The Dow Theory creators use the assertions of the stock 
market pricing as the basis to advance the scientific thoughts 
on the assertions of the stock market functions and the 
knowability of the stock market behavior from a macro 
standpoint.

Scientific Thoughts of the Dow Theory on the Stock 
Market Functions

[Hamilton-page-40] writes: “The stock market is the barometer 
of the country’s, and even of the world’s, business, and the 
theory shows how to read it.”

The Dow Theory points out that the stock market is the 
barometer of the country’s economy. This all-important 
function serves as one of the main functions of the stock 
market. This particular assertion of the Dow Theory does not 
come from assumptions or subjective imagination on the part 
of the Dow Theory creators. Rather they are founded upon 
a scientific summing up of immaculate analysis of the close 
relationship between the stock price and national economy in 
terms of historical data on the part of the Dow Theory creators. 
Charles Dow mainly relied on this particular scientific thought 
in creatively establishing DJIA and DJRA and, through them (as a 
barometer of the stock market), analyzing the boom and gloom 
of the national economy.

The Dow Theory Describes the Price Discovery Function of the 
Stock Market

[Hamilton-page-40-42] writes: “The sum and tendency of 
the transactions in the Stock Exchange represent the sum of all 
of Wall Street’s knowledge of the past, immediate and remote, 
applied to the discounting of the future. There is no need to add 
to the averages as some statisticians do, elaborate compilations 
of commodity price index numbers, bank clearings, fluctuations 
in exchange, volume of domestic and foreign trade, or anything 
else. Wall Street considers all these things. It properly regards 
them as experience of the past, if only of the immediate past, to 
be used for estimating the future.”

In the price movements, as Dow correctly saw, the sum of every 
scrap of knowledge available to Wall Street is reflected as far 
ahead as the clearest vision Wall Street can see. The market is not 
saying what the condition of business is today. It is saying what 
that condition will be months ahead. Even with manipulation, 
embracing not one but several leading stocks, the market is 
saying the same thing, and is bigger than the manipulation.
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Under the Dow Theory, apart from fulfilling the function of 
the barometer of the country’s economic situation, another 
important function of the stock market is its price discovery 
function, viz. in parallel with reflecting changes in the country’s 
economy, it outlines expectations of changes of the future 
economy of the country and its own changes of the stock market 
in the future in advance, to the fullest possible extent.

The Assertion of the Dow Theory Concerning the Rules of the 
Movement of the Stock Market in Terms of Applicability and 
Knowability

First of all, the Dow Theory advocates that the price discovery 
function and the rules of movement are the common features 
inherent to the stock market and that such features will not 
vary with the passage of time.

[Hamilton-page-14-15] writes: “The law that governs the 
movement of the stock market, formulated here, would be 
equally true of the London Stock Exchange, the Paris Bourse 
or even the Berlin Boerse...The principles underlying that law 
would be true if those Stock Exchanges and ours were wiped 
out of existence. They would come into operation again, 
automatically and inevitably, with the re-establishment of a 
free market in securities in any great capital...But the stock 
market there would have the same quality of forecast which the 
New York market has if similar data were available...It would be 
possible to compile from the London Stock Exchange list two or 
more representative groups of stocks and show their primary, 
their secondary and their daily movements over the period of 
years...Average made.”

Second of all, the Dow Theory advocates that the movement of 
the stock market has its inherent rules and that such rules are 
knowable.

[Hamilton-page-58-59] writes: “Order is Heaven’s first law.”
If Wall Street is the general reservoir for the collection of the 

country’s tiny streams of liquid capital, it is the clearinghouse 
for all the tiny contributions to the sum of facts of business. It 
cannot be too often repeated that the stock market movement 
represents the deductions from the accumulation of that 
truth, including the facts on building and real estate, bank 
clearings, business failures, money conditions, foreign trade, 
god movements, commodity prices, investment markets, crop 
conditions, railroad conditions, political factors and social 
conditions, but all of these with an almost limitless number of 
other things, each having its tiny trickle of stock market effect.

There must be laws governing these things, and it is our 
present purpose to see if we cannot formulate them usefully...
But we shall all recognize that order is Heaven’s first law, and 
that organized society, in the Stock Exchange or elsewhere, will 
tend to obey that law even if the unaided individual intelligence 
is not great enough to grasp it.

Irrespective of the stock market fulfilling its function as the 
barometer of the country’s economic performance or its price 
discovery function, these main functions are at the end of the 
day the results of the investor behavior. If the investor behavior 
follows certain patterns, the human society (collective investor 
behavior) behavior has definite rules to follow. In recognition 
of this, the movement of the stock market has its own rules 
to follow which are knowable. Such great thoughts of the Dow 

Theory stem from the profound understanding and mastery on 
the part of its creator of the actual stock price behavior and real 
humanity along with their interrelationship.

Assertions of the Dow Theory on the 
Stock Price Behavior

The Dow Theory uses the assertions of the stock market 
pricing as its basis in laying out practical rules on describing and 
predicting the stock price behavior from a micro point of view.

The Dow Theory Precisely Describes the Patterns of 
the Movement in the Stock Market

Movement in the stock market can be divided into three 
kinds of movement, namely, primary movement, secondary 
movement, and daily variation.

Based on [Hamilton-page-4-6], the Dow Theory 
is fundamentally simple. He showed that there are, 
simultaneously, three movements in progress in the stock 
market. The major is the primary movement...It will be shown 
that this primary movement tends to run over a period of at 
least a year and is generally much longer. Coincident with it, or 
in the course of it, is Dow’s secondary movement, represented 
by sharp rallies in a primary bear market and sharp reactions 
in a primary bull market...Concurrently with the primary and 
secondary movement of the market, and constant throughout, 
there obviously was, as Dow pointed out, the underlying 
fluctuation from day to day.

[Hamilton-page-23] writes: “He was too cautious to come out 
with a flat dogmatic statement of his theory, however sound 
it was and however close and clear his reasoning might be...in 
the Review and Outlook of the Wall Street Journal of January 4, 
1902, he says: ‘Nothing is more certain that the market has three 
well defined movements which fit into each other. The first is the 
daily variation due to local causes and the balance of buying or 
selling at that particular time. The secondary movement covers 
a period ranging from ten days to sixty days, averaging probably 
between thirty to forty days. The third swing is the great move 
covering from four to six years’”.

[Hamilton-page-23-24] comments: “Remember that Dow 
wrote this twenty years ago, and that he had not the records 
for analysis of the market movement which are now available. 
The extent of the primary movement, as given in this quotation, 
is proved to be far too long by subsequent experience; and a 
careful examination has shown me that the major swing before 
Dow wrote was never ‘from four to six years,’ rarely three years 
and oftener less than two. But Dow always had a reason for what 
he said, and his intellectual honestly assures those who knew 
him that it was at least an arguable reason.”

The Dow Theory Accurately Points Out the Long-
Term Upward Trend of the Stock Market and That 
Such Upward Trend Is Not Equal to the Downward 
Trend of the Stock Market

[Hamilton-page-147] writes: “So true is it that Wall Street 
is normally and healthily bullish...When we studied the major 
swings we saw that bull markets last longer than bear markets, 
and we might have seen that over a period of years long enough 
to average both bull and bear swings the tendency seems 
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upward, or at least has heretofore advanced, with the growing 
wealth of the country.”

[Hamilton-page-123] writes: “Among the many things which 
our stock market averages prove, one stands out clearly. 
It is that so far as the price movement is concerned, action 
and reaction are not equal. We do not have an instance of a 
bull market offset in the extent of its advance by an exactly 
corresponding decline in a bear market...We have seen that 
bull markets are, as a rule, of materially longer duration than 
bear markets. There is no automatically balancing equation 
there. I do not believe there is such an equation in human affairs 
anywhere.”

The Dow Theory Succinctly Represents the Bull and 
Bear Markets

[Hamilton-page-32] writes: “It is a bull period as long as the 
average of one high point exceeds that of previous high points. 
It is a bear period when the low point becomes lower than the 
previous low points.”

The Dow Theory correctly represents the connection between 
the amount of trading and the stock price trend.

[Hamilton-page-136] explains that “it is worthwhile to note 
here that the volume of trading is always larger in a bull market 
than in a bear market. It expands as prices go up and contracts 
as they decline.” Later generations capture the meaning of the 
Dow Theory in this regard in one single sentence: “Volume Goes 
with the Trend.”

The Dow Theory succinctly points out the absolute 
importance of closing price of the stock market in analyzing the 
stock market behavior. This is what later generations describe 
as that only closing prices are used. The appendix [Hamilton-
page-288] points out that “the averages are compiled from 
closing prices. In case there is no sale of a particular stock, the 
last previous close is used.”

The Dow Theory Emphasizes That the Two Averages 
Must Confirm

No one would negate the inherent scientific nature of the 
thoughts conceived by Charles H. Dow, viz. through analysis of 
the behavior of the stock indexes associated with several key 
representative sectors of the national economy, we are able 
to analyze the ups and downs associated with the economic 
activities. How then is it possible to enable the stock market 
barometer to accurately predict the trend of the economic 
movement? The Dow Theory provides an answer to this 
particular question through the establishment of DJIA and 
DJRA, and analyzes their common movement trends with a 
view to predicting success or failure of the involved economic 
activities. The Dow Theory lays repeated emphasis on the 
following key point: the two averages must confirm.

[Hamilton-page-185] comments that “our two averages of 
railroad and industrial stocks must confirm each other to give 
weight at any inference drawn from the price movement. The 
history of the stock markets shown by these averages, going 
back many years, proves conclusively that the two averages 
move together.”

The Rhea Version of the Dow Theory
As a successor and proponent of the Dow Theory, Robert 

Rhea changed the direction of the research of Charles Dow 
and William Peter Hamilton. On this basis, he initiated a 
systemization of the Dow Theory to formulate his own version 
of the Dow Theory. Hugh Bancroft writes, “Mr. Rhea, after 
a carefully study of Dow’s and Hamilton’s writings (there 
were 252 editorials to be analyzed), has performed a valuable 
service in presenting the Dow Theory in a form to serve the 
individual investors or speculator.”

Robert Rhea summarized 15 basic principles and expounded 
on each of them in relation to the stock price behavior 
described in the Hamilton version of the Dow Theory. These 
principles are: 1) Manipulation; 2) The Averages Discount 
Everything; 3) The Theory Is Not Infallible; 4) Dow’s Three 
Movements; 5) Primary Movements; 6) Primary Bear 
Markets; 7) Primary Bull Markets; 8) Secondary Reactions; 
9) Daily Fluctuations; 10) Both Averages Must Confirm; 11) 
Determining the Trend; 12) Lines; 13) The Relation of Volume 
to Price Movements; 14) Double Tops and Double Bottoms; 
15) Individual Stocks. In addition, Robert Rhea’s version has 
added two dedicated sections on “Speculation” and “Stock 
Market Philosophy,” which are closely bound up with the Dow 
Theory.

A comparison between the Rhea and Hamilton versions of 
the Dow Theory in relation to the stock price behavior tells 
us that the Rhea version only focuses on the assertions of the 
Dow Theory concerning the stock price behavior on the part 
of the Hamilton version in terms of systemization, whereas 
the scientific thoughts of the Dow Theory concerning stock 
market functions and stock market pricing associated with 
the Hamilton version has been basically neglected by Robert 
Rhea. The Rhea version uses one basic tenet to replace the 
foregoing two omitted core implications of the Dow Theory, 
which is known as the famous statement of “The Averages 
discount everything.” Consequently, the Rhea version of the 
Dow Theory is essentially the systemized assertion of the 
stock price behavior contained in the Hamilton version plus 
the above said famous statement.

Later advocates of the Dow Theory after Robert Rhea, such 
as Richard Schabacker, Robert D. Edwards, and John Magee, 
have chosen to follow the Rhea version of the Dow Theory 
instead of the Hamilton version. In the wake of Robert D. 
Edwards and John Magee having systematically used stock 
charts to analyze stock indexes and individual stock prices, 
the Rhea version of the Dow Theory and stock charts analysis 
have jointly constituted the classical technical analysis 
theory.

The Dow Theory’s Scientific 
Connotations and Weakness

Scientific Connotations of the Dow Theory
First of all, the scientific connotations of the Dow Theory lie 

in the following: The Dow Theory accurately describes the real 
stock market pricing mechanism of the stock markets and 
captures the real stock market functions. It also graphically 
describes the rules of the movement in the stock price, and 
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miraculously represents the interrelationship among the trio 
of actual stock behavior, the actual investor behavior and 
the basic factors in the economy. Precisely for this reason, 
the Dow Theory not only constitutes the cornerstone of 
the technical analysis theory, but also lays down the core 
theoretical foundation of the new stock market pricing theory 
in the future.

Secondly, the scientific nature of the Dow Theory is 
attributable to its two founders’ decades of nonstop keen 
observation and profound study of the relationship between 
the stock market and the economy together with the 
changeover of the bull/bear markets. It is also attributed to 
the two founders’ deep understanding of the strong influences 
exerted by the behavior of the actual investor, the market 
speculator, the manipulator, the financial institution and 
government with regard to the stock market pricing. Indeed, 
this has been a textbook example of the adage that real 
knowledge comes from practice.

Thirdly, if we link the scientific thoughts of the Dow Theory 
concerning the stock market with the modern financial 
history, we can find: Charles H. Dow was the first person to 
have correctly described the stock market functions, the first 
person to have correctly captured the mechanism of the stock 
market pricing, the first person to have precisely described 
the rules of the movement of the stock market and the first 
person to have put into place the stock market barometer in 
the financial history of the world.

What deserves special mention is that, over 100 years ago, 
Charles Dow and William Hamilton faced a dire lack of stock 
market data in conducting their research, and had no access to 
research papers concerning the stock pricing and stock price 
behavior for reference. Consequently, these two geniuses 
deserve any praise for their excellent work.

Weakness of the Dow Theory
Although the Dow Theory has formulated systematic 

scientific thoughts on the stock market (Macro portion) and 
rules describing the stock price behavior (micro portion), it 
has never been able to quantify, in a scientific manner, its 
thoughts on the stock market. Nor has it ever been able to 
scientifically quantify its rules describing the stock price 
behavior. If we ever view the stock market behavior as a 
whole, the Dow Theory has only completed about 40% of the 
entire stock market research workload. The remaining 60% 
relating to quantifying the scientific thoughts on the stock 
market and the formulation of the models describing the inner 
mechanism and rules of the stock market movement from the 
angle of microstructure of the stock market, and to further 
evolve and extend the Dow Theory (if needed) on the foregoing 
basis, has been left to be accomplished by future generations.

Obviously, the Dow Theory is a stock market pricing 
theory that requires further refinement and upgrades, as 
appropriate.

As the Dow Theory has been unable to formulate models 
to quantify the inner mechanism and rules of the stock price 
movement from the angle of microstructure of the stock 
market, the Dow Theory’s shortcomings in describing the 
stock price behavior are apparent. For instance, certain 

Dow Theory statements on the stock price behavior address 
only the symptoms rather than the root cause of the issue. 
Even though some statements have turned out to be very 
accurate, the Dow Theory simply fails to tell us why they were 
so accurate in the first place. As the symptoms of the stock 
price behavior vary significantly, it is not at all surprising 
that investors would invariably experience difficulties and 
inadequacies with the Dow Theory in terms of operability over 
a short span of time.

To scientifically understand and comprehend the stock 
market functions, the stock market pricing and the stock 
market behavior etc., people must have a comprehensive 
scientific cognition and understanding of actual investor 
behavior and stock price behavior together with their 
interrelationship. Such requirements are clearly too advanced, 
far exceeding the confines of the times when the Dow Theory 
founders carried out the research. In fact, it is too much to 
ask for full resolutions of such matters from the financial 
academic circles, even at the present time.

The Dow Theory Being Ignored by the Financial 
Academic Circle

Almost in parallel with the unveiling of the Rhea version 
of the Dow Theory, in 1934, Alfred Cowles published his “Can 
stock market forecasters forecast?” paper in the journal 
Econometrica. In the paper (page 315), Cowles states:

“From December 1903 to December 1929, Hamilton, through 
the application of his forecasts to the stocks composing 
the Dow Jones industrial averages, would have earned a 
return, including dividend and interest income, of 12 percent 
per annum. In the same period, the stocks composing the 
industrial averages showed a return of 15.5 percent per 
annum. Hamilton, therefore, failed by an appreciable margin 
to gain as much through his forecasting as he would have 
made by a continuous outright investment in the stocks 
composing the industrial averages.”

In the summary of the paper, he writes the following:
“William Peter Hamilton, editor of the Wall Street Journal, 

publishing forecasts of the stock market based on the Dow 
Theory over a period of 26 years, from 1904 to 1929, inclusive, 
achieved a result better than what would ordinarily be 
regarded as a normal investment return, but poorer than the 
result of a continuous outright investment in representative 
common stocks for this period. On 90 occasions, he 
announced changes in the outlook for the market. Forty-five 
of these predictions were successful and 45 unsuccessful.”

Although technical analysis and fundamental analysis were 
well received and extensively applied by Wall Street, as from 
Cowles (1934) testing of the Dow Theory providing strong 
evidence against the ability of Hamilton, the most famous 
Wall Street technician, to forecast the stock market, technical 
analysis had not been acceptable to the financial academic 
circles ever since. 64 years later, the Brown, Goetzmann and 
Kumar (1998) paper completely overturned the Cowles (1934) 
research conclusions. The paper concludes:

“A review of the evidence against William Peter Hamilton’s 
timing abilities suggest just the opposite—his application of 
the Dow Theory appears to have yielded positive risk-adjusted 
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return over a 27-year period at the beginning of the century. 
The basis of the track record seems to have been his ability 
to forecast bull and bear market moves...Ever since, Cowles’ 
article ‘Chartists’ in general, and Dow theorists in particular, 
have been regarded by financial economists with skepticism. 
Our replication of Cowles’ analysis results contrary to 
Cowles’ conclusions. At the very least, it suggests that more 
detailed analysis of the Hamilton version of the Dow Theory is 
warranted.”

Because the financial academic circle only regards the 
Dow Theory as a simple technical analysis theory or a mere 
momentum strategy as the object of research, even though 
the Brown, Goetzmann and Kumar (1998) paper proved that 
the Dow Theory was capable of predicting the market, the 
paper was given little attention in the financial academic 
circle, which it well deserved. In fact, the prejudice and spite 
against the Dow Theory on the part of the financial academic 
community had not been changed and eliminated by the 
Brown, Goetzmann and Kumar (1998) paper. At the same 
time, such scientific conclusions as the Dow Theory regarding 
the stock market functions and the stock market pricing 
mechanism have been simply ignored or taken lightly by the 
financial academic circle in general.

Conclusion
It is said that the great scientist Isaac Newton (big loser 

of the South Sea Stock Price Bubble) muttered that he 
“could calculate the motions of the heavenly bodies, but not 
the madness of the people.” Over the past 100 years, the 
stock market barometer5  created by Charles Dow not only 
successfully measured the relationship between the stock 
market and the economy, but also successfully measured the 
madness and desperation on the part of the investors caught 
up in the bull and bear turbulences of the stock market.

Due to the above-mentioned technical difficulties and 
inclement technical analyst industrial environment, there 
have been severe deviations and even stoppages in the 
effort to carry forward and extend the Dow Theory in terms 
of scientific thoughts and research directed in a scientific 
manner all along. With the passage of time, the Dow Theory 
assertions on the stock market functions and stock market 
pricing—which may be even greater scientific thoughts 
than the stock market barometer—have been neglected 
and forgotten. The Rhea version of the Dow Theory that has 
been handed down to the present has already replaced the 
Hamilton version of the Dow Theory as the authoritative Dow 
Theory that is prevailing in the world at this point in time.

When Robert Rhea made simplification and systemization 
of the Dow Theory, he could never have imagined that “the 
averages discount everything” mantra could never replace 
the Dow Theory scientific conclusions on the stock market 
functions and stock pricing mechanism. As a result, the 
above said mantra basically became an empty shell without 
any substance. Moreover, Robert Rhea could never have 
imagined that, in parallel with the reduction and deletion 
of such scientific conclusions, he had inadvertently deleted 
the theoretical basis of the Dow Theory on the stock price 
behavior. Consequently, a sad fact remains that, while the 

Rhea versions of the Dow Theory and Robert D. Edwards 
and John Magee’s stock chart analysis techniques jointly 
constitute the classical technical analysis theory, the real 
scientific theoretical foundation in support of the classical 
technical analysis theory has ceased to exist.

References
Bachelier, Louis, Theory of Speculation, In Paul Cootner (ed.), The 

Random Character of Stock Market Prices, Cambridge, MA: MIT 
Press, 17–75.

Blume, Lawrence, David Easley, and Maureen O’Hara, 1994, Market 
statistics and technical analysis: The role of volume, Journal of 
Finance 49, 153–181

Brock, William, Joseph Lakonishok, and Blake LeBaron, 1992, Simple 
technical trading rules and the stochastic properties of stock 
returns, Journal of Finance 47, 1731–1764.

Brown, David, and Robert Jennings, 1989, On technical analysis, Review 
of Financial Studies 2, 527–551.

Brown, Stephen J., William N. Goetdzmann and Alok Kumar, 1998. The 
Dow Theory: William Peter Hamilton’s Track Record Reconsidered, 
Working Paper Series, SSRN.

Chang, P. H. K., and C. L. Osler, 1999, Methodical Madness: Technical 
Analysis and the Irrationality of Exchange-Rate Forecasts, 
Economical Journal 109: 636–661.

Cowles, Alfred, 1934, Can stock market forecasters forecast? 
Econometrica 1, 309-324.

Edwards, Robert, and John Magee, 1997, Technical Analysis of Stock 
Trends, (7th edition, 2nd printing), 1998 (CRC Press LLC, Florida USA)

Fama, Eugene F., 1970, Efficient capital markets: A review of theory and 
empirical work, Journal of Finance 25, 384-417.

Frankel, J. A., and K. A. Froot, 1990, Chartist, Fundamentalists, and 
Trading in the Foreign Exchange Market, American Economic Review 
80: 181-185.

Frost, A. J., and Robert R. Prechter, Jr., 1985, Elliott Wave Principle Key to 
Stock Market Profits, Haddon Craftsmen, Inc., New York City. USA.

Gann, W. D., 1923, Truth of the Stock Tape, Financial Guardian Publishing 
Co. 91 Wall Street New York.

Gann, W. D., 1949, 45 Years in Wall Street, Lambert Gann Publishing Co. 
Inc. WA.

Graham, B. and D. L. Dodd, 1934, Security Analysis, New York: McGrew 
Hill.

Hamilton, William, 1922, The Stock Market Barometer (John Wiley & 
Sons, Inc)

Jiler, William L., 1962, How Charts Can Help you in the Stock Market, 
Fraser Publishing Co. Vermont.

Keynes, John Maynard, 1936, The General theory of Employment 
Interest and Money, Macmillan and Co., Limited London.

Lo, Andrew W., and Harry Mamaysky, and Jiang Wang, 2000, 
Foundations of Technical Analysis: Computational Algorithmas, 
Statistical inference, and Empirical Implementation, The Journal of 
Finance, No. 4 1705-1765.

Malkiel, Burton, 1999, A Random Walk Down Wall Street: Including a 
Life-Cycle Guide to Personal Investing (W. W. Norton, New York)

Murphy, John J., 1999, Technical Analysis of the Financial Markets: A 
Comprehensive Guide to Trading Methods and Applications, New York 
Institute of Finance. NJ.

IFTA JOURNAL      2020 EDITION

PAGE 56 IFTA.ORG



Murphy, John J., 1986, Technical Analysis of the Futuresl Markets: A 
Comprehensive Guide to Trading Methods and Applications, New 
York Institute of Finance. NJ.

Neely, Christopher, Peter Weller, and Robert Dittmar, 1997, Is technical 
analysis in the foreign exchange market profitable? A genetic 
programming approach, Journal of Financial and Quantitative 
Analysis 32, 405-426.

Neely, C. J. 2002, The Temporal Pattern of Trading Rule Returns and 
Exchange Rate Intervention: Intervention Does not Generate 
Technical Trading Profits, Journal of International Economics 58: 
211-232.

Neely, C. J., and P. A. Weller, 2001, Technical Analysis and Central bank 
Intervention, Journal of International Money and Finance 20: 949-
970.

Neftci, Salih, 1991, Naive trading rules in financial markets and 
Wiener-kolmogorov prediction theory: A study of Technical 
analysis, Journal of Business 64, 549-571.

Neftci, Salih, and Andrew Policano, 1984, Can chartists outperform 
the market? Market efficiency tests for “technical analyst”,  
Journal of Futures Markets 4, 465-478.

Nison, S., Candlestick Charting Techniques, New York Institute of 
Finance, New York, 1991.

Osler, C. L., 2003, Currency Orders and Exchange Rate Dynamics: 
An Explanation for the Prediction Success of Technical Analysis, 
Journal of Finance 58: 1791-1819..

Park, Cheol-Ho., and Scott H. Irwin, 2004, The Profitability of 
Technical Analysis: A Review, AgMAS Project Research Report 
2004-04, SSRN Working Paper Series.

Pring, Martin J., 1985, Technical Analysis Explained: The Successful 
Investor’s Guide to Spotting Investment Trends and Turning Points, 
McGraw-Hill, Inc. USA.

Pruitt, Stephen, and Robert White, 1988, The CRISMA trading system: 
Who says technical analysis can’t beat the market? Journal of 
Portfolio Management 14, 55-58.

Rhea, Robert, 1932, The Dow Theory (Baron’s, New York, NY.)

Schabacker, Richard W., 1932, Technical Analysis and Stock Market 
Profits: A Course in Forecasting, Pearson Education Limited. 
London.

Sharpe, William F., 1964, Capital asset prices: a theory of market 
equilibrium under condition of risk, Journal of Finance 19, 425-442

Tabell, Anthony, and Edward Tabell, 1964, The case for technical 
analysis, Financial Analyst Journal 20, 67-76.

Treynor, Jack, and Robert Ferguson, 1985, In defense of technical 
analysis, Journal of Finance 40, 757-773.

Williams, John Burr, 1938, The Theory of Investment Value, Fraser 
Publishing Company, Vermont. USA.

Notes
1	The present paper is the second one of the series, of research papers 

dealing with traditional technical analysis theories. The first report 
of the series entitled "On the Great Dow Theory," had been accepted 
by the IFTA Journal for publication in its 2019 annual edition. This 
research project is aimed at the conduct of a scientific evaluation 
and comprehensive revision of the traditional technical analysis 
theories. 

2	The present paper has drawn references of a significant number of 
sentences and paragraphs from The Stock Market Barometer. The 
author therefore wishes to express his profound gratitude to the 
copyright owner of the book, John Wiley & Sons, Inc.

3	Brown, Goetzmann and Kumar (1998) thinks that the Dow Theory 
should be regarded as a Momentum strategy. 

4	The Great Buffett has mentioned time and again that, from a 
relatively long-term point of view, the basic value of the stock 
determines the stock price. People invariably believe that he is 
quoting his coach Graham or re-stating the viewpoint of Williams, 
the founding father of fundamental analysis. It has not occurred to 
anyone that this insightful viewpoint actually comes from the Dow 
Theory.

5	DJIA conceived by Charles H. Dow in 1884 as the well-known 
economic leading indicator has witnessed a rise from 40 points to 
about 25,000 points today.
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Abstract
The starting point of this work is the Modern Portfolio Theory 

of Markowitz and Sharpe, who originated the term market 
portfolio. They used the standard deviation to measure risk—an 
approach that is no longer up to date since Artzner, Dealbaen, 
Eber and Heath introduced the coherent measures of risk. 
Therefore, the present work uses a coherent risk measure to 
define a coherent market portfolio. Another criticism of Modern 
Portfolio Theory is that there is no specification to estimate the 
yield of securities. In this work, this shortcoming is eliminated 
by means of technical analysis, and the expected return will 
be rated by the well-known motto “The trend is your friend.” 
The backtest of the constructed portfolio in the European 
and American markets shows that this theoretical work also 
provides a practical added value.

Introduction
The “Modern Portfolio Theory” is based on the work Portfolio 

Selection by Harry Markowitz (1952), which addresses the 
problem of composing an optimal portfolio. It is assumed that 
there are only risky assets and that the optimal portfolio for 
an investor is dependent on its risk-return preference. Based 
on this approach, William Sharpe (1964) has defined a so-called 
market portfolio by introducing a money market investment. 
This market portfolio is independent of an investor’s preference 
and maximizes the Sharpe ratio. As a consequence, the 
investor preference decides only in the weighting between the 
investment in the money market and the market portfolio. 
This historical result is recapitulated in the “Modern Portfolio 
Theory” section, since it is the basis for this paper.

The pioneering research by Harry Markowitz and William 
Sharpe was honored with the Nobel Prize for Economic Sciences 
in 1990, donated by the Swedish Central Bank, together with 
Merton Miller. Nonetheless, the assumptions on which the 
model of Markowitz is based on are quite controversial. Its 
prerequisites are, firstly, that every investment has an expected 
return and that the standard deviation of that return is known 
and secondly, the standard deviation of the return serves 
as a risk indicator in its model. However, these assumptions 
are questioned in practice. On the one hand, it is unclear how 
to estimate the expected return of a security, and on the 
other hand, a standard deviation also includes advantageous 
fluctuations and thus, does not necessarily serve as a measure of 
risk. For both assumptions, alternatives are offered in this paper.

To define suitable risk measures, Artzner, Delbaen, Eber 
and Heath established coherent measures of risk (1999). 
Their definition of a suitable risk measure is explained in 
the “Coherent Measures of Risk” section. As an example 

of a coherent measure of risk, the expected shortfall and 
its calculation are also introduced. On this basis, the risk 
measurement is performed in the following sections.

Of course, to estimate future returns on a security, technical 
analysis is getting involved. One of the basic principles of 
technical analysis is “The trend is your friend.” In the “A Trend-
Following Approach to Estimate Future Returns” section, this 
motto is the basis for two fairly simple procedures: the use of 
rate-of-change or the use of a linear regression. The advantage 
of the chosen approaches is that they easily enable back testing. 
Nonetheless, more complex methods for estimating the return 
on a security are also conceivable.

Using a coherent and hence better risk measurement as well 
as a successful estimation of future returns using the technical 
analysis, the previously presented Modern Portfolio Theory will be 
revised. In “The Coherent Market Portfolio” section, a new market 
portfolio will be established that is based on a coherent measure of 
risk and is therefore called a coherent market portfolio.

The practical use of these theoretical papers is demonstrated 
in the “A Trading System Based on the Coherent Market 
Portfolio” section, a trading strategy based on the coherent 
market portfolio will be presented. This strategy is back-tested 
on the European as well as on the American stock market. A 
short summary in the Conclusion completes the work.

Modern Portfolio Theory

The Efficient Frontier Without Restrictions

Model Setup
In the basic setup of the Modern Portfolio Theory, there 

are N securities, each of them has a known expected return 
ri. However, this return is uncertain for all securities and its 
standard derivation is quantified with σi. Furthermore, the 
returns of the securities are correlated and the covariance 
matrix of the returns is given by Cij = σi σji ρij, where ρij denotes 
the correlation between security number i and security number 
j. Obviously, the matrix C is symmetric and it is assumed 
that is invertible—hence, each security comprises a certain 
idiosyncratic risk that cannot be eliminated with linear 
combinations of other securities. So, in this model, there is no 
deterministic1  investment possible.

The composition of a portfolio is described by weights wi, 
which denotes the portion of the security i in the portfolio. 
Hence, there is the constraint2

(1)
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The expected R return of such a portfolio is given by:

(2)

and the variance V of the portfolio return is evaluated by:

The standard derivation of the portfolio’s return is simply 
given by , which is interpreted as the risk of this portfolio.

Mathematical Solution
In this environment, the search for the composition of a 

portfolio with the lowest possible risk is performed under 
the condition that this portfolio has an expected return of 
R. From the mathematical point of view, this is the problem 
of minimization of , the risk of the portfolio, under the 
constraints (1) and (2). Instead of minimizing , this problem 
is obviously equivalent to minimize ½V . The standard approach 
to solve such an optimization under constraints is the method of 
Lagrange multipliers. The Lagrangian of this problem is given by:

The necessary condition for the solution is that all partial 
derivations of the Lagrangian are zero:

The first equation yields the portfolio decomposition 
expressed by the two Lagrange multipliers:

(3)

Inserting this solution into the second and third equation 
yields a system of two linear equations for λ and μ:

Using the abbreviations a = r T C-1 r, b = r T C -1 1, d=1T
 C-11, and 

using the fact that the matrix C -1 is symmetric, hence b=1T
 C-1r, 

one can obtain the solution for the two Lagrange multipliers by:

4 
 

 The necessary condition for the solution is that all partial derivations of the Lagrangian 

are zero: 

𝟎𝟎 = 𝑪𝑪	𝒘𝒘 − 	𝜆𝜆	𝒓𝒓 − 	𝜇𝜇	𝟏𝟏 

0 = 𝑅𝑅 −	𝒓𝒓3𝒘𝒘 

0 = 1 −	𝟏𝟏3𝒘𝒘 

The first equation yields the portfolio decomposition expressed by the two Lagrange 

multipliers: 

𝑤𝑤 = 𝜆𝜆	𝑪𝑪D0	𝒓𝒓 + 	𝜇𝜇	𝒓𝒓3𝑪𝑪D0	𝟏𝟏 (3) 

Inserting this solution into the second and third equation yields a system of two linear 

equations for 𝜆𝜆 and 𝜇𝜇: 

𝜆𝜆		𝒓𝒓3𝑪𝑪D0	𝒓𝒓 + 	𝜇𝜇	𝒓𝒓3𝑪𝑪D0	𝟏𝟏 = 𝑅𝑅 

𝜆𝜆		𝟏𝟏3𝑪𝑪D0	𝒓𝒓 + 	𝜇𝜇	𝟏𝟏3𝑪𝑪D0	𝟏𝟏 = 1 

Using the abbreviations 𝑎𝑎 = 𝒓𝒓3𝑪𝑪D0	𝒓𝒓, 𝑏𝑏 = 𝒓𝒓3𝑪𝑪D0	𝟏𝟏, 𝑑𝑑 = 𝟏𝟏3𝑪𝑪D0	𝟏𝟏, and using the fact 

that the matrix 𝑪𝑪D0 is symmetric, hence 𝑏𝑏 = 𝟏𝟏3𝑪𝑪D0	𝒓𝒓, one can obtain the solution for the two 

Lagrange multipliers by: 

𝜆𝜆
𝜇𝜇

=
1

𝑎𝑎	𝑑𝑑 − 	𝑏𝑏8 	
𝑑𝑑 −𝑏𝑏
−𝑏𝑏 𝑎𝑎 	

𝑅𝑅
1

 

Since 𝜆𝜆 and 𝜇𝜇 are known by this equation now, also the composition of the portfolio 

that minimizes the variance for a given expected return is explicitly given by equation (3). Also, 

the variance can easily be computed in terms of  the expected return of the portfolio: 

𝑉𝑉 𝑅𝑅 = 𝒘𝒘3𝑪𝑪	𝒘𝒘 = 𝑎𝑎	𝜆𝜆8 𝑅𝑅 + 2	𝑏𝑏	𝜆𝜆 𝑅𝑅 𝜇𝜇 𝑅𝑅 + 𝑑𝑑		𝜇𝜇8 𝑅𝑅 	 

Since 𝜆𝜆 𝑅𝑅  and 𝜇𝜇 𝑅𝑅  are linear in 𝑅𝑅, the minimal variance 𝑉𝑉 𝑅𝑅  of a portfolio with 

expected return 𝑅𝑅 shapes a quadratic parabola. 

Example 

To illustrate the previous computations, we consider an example of four stocks and 

assume that there is a constant pairwise correlation between these assets of 60%. Their expected 

returns and volatilities are listed in Table 1. 

Since λ and μ are known by this equation now, also the 
composition of the portfolio that minimizes the variance for a 
given expected return is explicitly given by equation (3). Also, 
the variance can easily be computed in terms of the expected 
return of the portfolio:

Since λ(R) and μ(R) are linear in R, the minimal variance V(R)of 
a portfolio with expected return R shapes a quadratic parabola.

Example
To illustrate the previous computations, we consider an 

example of four stocks and assume that there is a constant 
pairwise correlation between these assets of 60%. Their 
expected returns and volatilities are listed in Table 1.

Table 1. Expected Returns and Variance of the Equities in 
the Example

Security Expected  
Return

Variance of 
the Return

Risk (standard 
derivation)

Equity 1 4% 15% 0,3872
Equity 2 5% 20% 0,4472
Equity 3 3% 20% 0,4472
Equity 4 6% 30% 0,5477

Given this example, the results of the previous calculations 
are shown in Figure 1. The red dots show the single stocks 
available for investing. The black line shows the minimal risk of 
an optimal portfolio for each given return, hence the function 

. This curve is to the left of the individual shares, which 
underlines the statement that diversification can reduce the risk 
compared to a single investment. The top branch of the black 
curve is called efficiency frontier because all efficient portfolios 
lie on this line (i.e., the portfolios with the minimum risk for a 
given expected return). An investor will invest in a portfolio that 
is located at the efficiency frontier, and the concrete selection is 
based on his personal risk appetite.

The Model in the Absence of Short Selling
In the previous analysis, there was no restriction on the 

portfolio composition. Following the discussion of Markowitz, 
1952, one can consider the restriction that there is no possibility 
of short selling, and the mathematical description of this 
restriction is given by wi  ≥0. Using this additional condition, 
there is no closed form solution available, and one needs 
numerical solutions to determine the variance minimizing 
portfolios and the corresponding efficient frontier.

To illustrate the results under the no-short-selling constraint, 
the above example is revisited under this constraint. The various 
risk-return profiles of portfolios with no short positions are 
shown with blue dots in Figure 1. This graph shows that one has 
to take significantly higher risks to construct a portfolio with an 
expected return of nearly 6%, and one cannot expect to construct 
a portfolio with an expected return above 6% in this example.

Figure 1. The Efficient Frontier and the Portfolios 
Without Shortselling
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The Sharpe-Ratio and the Market Portfolio
William Sharpe (1964) expanded the universe on investment 

opportunities by introducing the possibility of investing in 
a fixed-term deposit with rate r0. The introduction of such a 
deterministic investment has an important consequence, which 
is explained by Figure 2. From the risk-bearing securities (red 
dots), a portfolio with minimal risk (standard deviation) can be 
composed for every expected return according to the previous 
results. The optimal portfolios lie on the efficiency frontier, 
which is again shown as a black curve. Furthermore, there is 
now a deterministic investment that promises a certain secure 
return. This is marked in the figure with a green dot and lies 
exactly on the yield axis since its return has a zero variance. 
Using this picture, one can define the Capital Market Line 
(green), which goes through the deterministic asset (green dot) 
and which is tangent to the efficiency frontier (black line). The 
touching point (blue dot) is called either Tangency Portfolio or 
Market Portfolio.

Figure 2. Portfolio Selection Including a Deterministic Asset

The capital market line represents all portfolios that are 
obtainable by mixing the market portfolio (MP, blue dot) and 
the deterministic asset (DA, green dot). Let w ∈ [0,1] and rMP the 
expected return σMP and the risk of PM and study a combined 
Portfolio P(w) = wMP + (1 – w) DA. The expected return and the 
standard derivation of this portfolio is given by

expected Return (P(w)) = wrMP + (1 – w) r0 =r0 + w(rMP–r0)

standard derivation (P(w)) = wσMP

Hence, both the risk and the yield of the portfolio mixed by 
the deterministic asset and the market portfolio are linear 
functions in w, and hence, these portfolios lie on the green 
capital market line. It is clear that each of this P(w) is preferred 
to any other portfolio: For a given risk level, the portfolio on the 
capital market line yields the largest return compared to any 
other portfolio.

From the last two equations, the slope S of the capital market 
line can be computed to

This expression can also be computed for any other portfolio 
than the market portfolio MP and denoted the Sharpe Ratio of a 

portfolio. Hence the market portfolio MP can be characterized 
as the portfolio on the efficiency frontier which maximizes the 
Sharpe Ratio.

So, the market portfolio is independent from any investors 
risk preference. Each rational investor will invest into a mixture 
of the market portfolio and the deterministic asset, hence into 
P(w). The mixture parameter is the only individual parameter 
for each investor, which has to be chosen in accordance to his 
individual risk preference.

Coherent Measures of Risk
The previous section presented the Modern Portfolio Theory 

based on the standard deviation as a risk measure. As explained 
in the introduction, this risk measurement methodology is 
controversial. Therefore, general considerations on risk measures 
are presented in this section. The essential inspiration for this is 
based on the work of Artzner, Delbaen, Eber and Heath (1999), who 
established the term of a coherent risk measure. The axiomatic 
approach of their work leads to a specific risk measure, the 
Expected Shortfall, and its calculation in practice is also presented. 
In light of the fact that the deterministic investment is of 
particular importance in portfolio theory, risk measurement using 
the deterministic investment as benchmark is also considered.

Definition of Coherent Measures of Risk
A general definition of risk based on an encyclopedia reads:

Risk is the possibility to suffer harm due to action or omission.

In the field of finance, the harm is given by a financial loss, and 
the action is the composition of a portfolio. Furthermore, the 
nature of the risk is characterized by uncertainty—a guaranteed 
loss is therefore no risk anymore! To model the uncertainty, a 
probability space (Ω,F,P) is introduced that describes, for example, 
all possible outcomes of future share prices. For the profit or loss, 
the portfolio is crucial, and L denotes the set of all loss functions, 
that is, the set of all mappings from Ω to R. A function L ∈ ℒ 
indicates the loss (or in the case of a negative value the profit) that 
a portfolio suffers in a particular scenario. The risk for a certain 
loss function of a portfolio is denoted by ρ. Using these notations 
one can define according to (Artzner and others, 1999):

Definition (coherent measure of risk): A mapping 
ρ:ℒ→ℝ∪{+∞}3 is called a coherent measure of risk, if and only 
if these four axioms apply:

Positive homogeneity: For λ≥0 all L∈ ℒ and holds:
ρ(λL) = λρ(L)

Monotonicity: For all L1,L2 ∈ ℒ with L1 ≤ L2 holds: 
ρ(L1) ≤ ρ(L2)

Subadditivity: For all  L1,L2 ∈ ℒ holds:
ρ(L1 + L2) ≤ ρ(L1) + ρ(L2) 

Translation invariance4: For all λ∈ ℝ and L∈ ℒ holds:
ρ(L+λ) = ρ(L) + λ

Hence, a coherent measure of risk fulfills four rules, which all 
have a practical interpretation:
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1.	 The positive homogeneity states that, for example, if all 
positions in a given portfolio are doubled (λ = 2), such 
an enlarged portfolio bears twice the risk of the original 
portfolio. Thus, it is also clear that the risk is not measured 
as a relative change (e.g., in percentage), but denotes an 
absolute size in a currency (e.g., USD).

2.	 If there are two portfolios, and the loss in the first portfolio 
is always less or equal to the loss of a second portfolio, then 
the risk of the first portfolio should be smaller compared 
to the second portfolio. That is the statement of the 
monotonicity axiom.

3.	 The subadditivity axiom states the mathematical 
formulation of classical diversification: the overall risk that 
is made up of two portfolios should be less than or equal to 
the sum of the risks of the two individual portfolios.

4.	 The translation invariance covers the effect of additional in- 
or outflows on the risk of a portfolio: If there is an additional 
outflow  λ > 0 , this increases the risk, and an additional 
income  λ > 0 reduces the risk of a portfolio accordingly.

Properties of Well-Known Risk Measures
In this section, three different risk measures are studied with 

respect to the four axioms of coherent risk measures. The proofs 
of the lemmas in this section are omitted, the mathematically 
interested reader will find all proofs in (Reiss, 2019). Mostly, 
only simple calculations are needed; harder to proof is the 
subadditivity of the expected shortfall, which is also given e.g., 
in (McNeil and others, 2005) or (Embrechts and Wang, 2015).

Standard Derivation
In the Modern Portfolio Theory, the standard deviation serves 

as a measure of risk. It is not surprising that this risk measure 
fulfills the subadditivity—otherwise there would have been 
no diversification effect in the portfolio theory. However, the 
standard deviation is not a coherent measure of risk and thus 
the criticism in the use of standard deviation as a measure of 
risk is justified.

Lemma 1: The standard derivation is not coherent. It complies 
with positive homogeneity and subadditivity, but the standard 
derivation is neither monotone nor translation invariant.

Value at Risk
The Value at Risk is a well-known risk measure since it is 

the market-standard risk measure and is still used in banking 
supervision. It is defined as a quantile of the loss distribution 
for a given percentile α, and typical values for are 95% or 99%. 
To interpret this definition, the value at risk for 99% percentile 
states that in 99% of all cases, the loss of the portfolio will not 
exceed this threshold. However, there are two criticisms on this 
risk measure: At first, it does not say anything about the size of 
the losses, if they exceed the value at risk; hence, huge losses 
in the case of unlikely events are ignored. On the other hand, 
the value at risk does not fulfill the condition of subadditivity 
and is inappropriate to establish a limit system in a financial 
institution: Limiting the value at risk to all individual portfolios 
of a bank does not ensure that the value at risk of the bank is 
limited by the sum the individual portfolios value at risk.

Definition (value at risk): Let L ∈ ℒ and 0 < α < 1. Then the 
value at risk for the percentile α is defined by

Lemma 2: The value at risk fulfills the axioms of positive 
homogeneity, monotonicity and translation invariance. But, it is 
not subadditive and therefore not a coherent risk measure.

Expected Shortfall
Another risk measure is the expected shortfall. In contrast to 

the value-at-risk, the expected shortfall focuses on the worst 
1 – α percent of the scenarios, and the expected shortfall is 
defined as the expectation of the loss in these worst scenarios.

Definition (expected shortfall): Let  L ∈ ℒ and 0 < α < 1 . Then 
the expected shortfall is given by

Lemma 3: The expected shortfall is a coherent risk 
measure, i.e., it fulfills the four axioms positive homogeneity, 
monotonicity, subadditivity and translation invariance.

In the following sections of this paper the expected shortfall 
will serve as risk measure since it is coherent, and it is 
anticipated that this risk measure will become broadly accepted 
in the financial industry, even if the value at risk is still the 
standard risk measure today. In the longer term, it seems likely 
that the general use of the expected shortfall will prevail since 
the Basel Committee on Banking Supervision at the Bank for 
International Settlements recommends converting from value 
at risk to expected shortfall (2013).

At this point, a reference to other risk measures seems 
appropriate, namely the worst conditional expectation and the 
tail conditional expectation; the latter is also called conditional 
value at risk. The mathematical definitions are slightly 
different, and for an impressive example in which these risk 
measures lead to diverse results, see (Acerbi and Tasche, 2002). 
In particular, the tail conditional expectation and thus, the 
conditional value at risk, is not coherent.

Computing the Expected Shortfall in Practice
The expected shortfall as a coherent measure of risk has been 

presented theoretically, and in this section the methodology 
for practical calculation is presented. In this example, the risk 
horizon will be one week and the percentile used will be 95%. 
The basis for this computation is a historical simulation, which 
assumes that the securities behave the same over a certain 
period of time in the past. For the sake of simplicity, the risk 
measurement for a portfolio of equities or funds is considered, 
hence, a portfolio of securities without maturity. For securities 
with an explicit maturity, their behavior changes over time, 
and no similar behavior over a certain historical period may be 
assumed. Therefore, such securities require a more complex 
handling and are not considered here.

In institutional risk management, the historical simulation 
is based on time series with daily data. This general practice, 
however, involves a special effort for creating the time series 
since holidays in different countries or the time shift between 
different stock exchanges must be taken into account. To avoid 
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these difficulties, a historical simulation based on weekly data is 
presented here. For all shares, the last 51 weekly closing prices 
are considered, which corresponds to a history of almost one 
year. For the i th share, C ij denotes the closing price j weeks ago, 
hence for j = 1 it is the last week closing price, for j = 2 the close 
price at the second to last week, etc. Since the relative changes 
are relevant for the stocks, the changes are considered on a 
logarithmic scale:

This definition for relative changes on a logarithmic scale is 
usual; using the well-known approximation ln(1 + x) ≈ x one can 
easily show that the definition is close to the classical definition 
of relative changes:

Hence, the first 50 scenarios for the equities have been 
defined, but this number is too small for statistics, and 
therefore, an additional 50 scenarios are introduced by the 
technique of mirroring5:
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The use of mirrored scenarios is quite common and well known in practice (Holton, 

2014); a detailed study further shows that the historical simulation with mirrored scenarios also 

provides better results for the computation of the expected shortfall (Zikovic and others, 2011). 

In addition to the increased number of scenarios, this approach has the advantage of having as 
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The use of mirrored scenarios is quite common and well 
known in practice (Holton, 2014); a detailed study further shows 
that the historical simulation with mirrored scenarios also 
provides better results for the computation of the expected 
shortfall (Zikovic and others, 2011). In addition to the increased 
number of scenarios, this approach has the advantage of having 
as many positive and negative scenarios, and thus a quantile a≥0 
of ensures that the expected shortfall of a stock does not become 
negative. Based on these 100 scenarios for the securities, the loss 
function of a portfolio can be evaluated. If the portfolio contains 
a total of N positions, and let ni denote the number of share i in 
the portfolio and Ci

0 the current share price, then:

These values of Lj will be put in ascending order, thus, 
reordered values are denoted by ~L and hence j≤k implies  ~Lj ≤ 
~Lk . The expected shortfall results as the expectation beyond 
a confidence a. In our case, a=95%, and for a total of S = 100 
scenarios, 5 scenarios are outside the chosen confidence. In 
general, the expectation is computed by the K largest values 
with K = (1–a) S, and the expected shortfall is given by:

Measuring Risk With Respect to a Benchmark
The presented risk measurement of the expected shortfall 

can not only be considered in a nominal risk as in the previous 
section, but also with respect to a given benchmark. Then 
the loss function is calculated by the deviation from the 

benchmark. In the first case, an index is used for benchmarking, 
and the coherent risk measurement provides an alternative 
to the classical tracking error, which typically corresponds 
to a standard deviation. In the second case, the deterministic 
investment is considered a special case of a benchmark.

An Index as Benchmark
To determine the risk of a portfolio with respect to a 

benchmark (e.g., a stock index), one also needs to know the 
historical scenarios of the benchmark δB

j in addition to the 
historical scenarios of the stocks δi

j. These are determined 
analogously to the scenarios of the shares. Let Bj be the weekly 
close of the benchmark j weeks ago and define:
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Holding on the notations of the previous section, the loss in each scenario is now the 

underperformance with respect to the benchmark and hence given for j=1...100 by: 

Holding on the notations of the previous section, the loss in 
each scenario is now the underperformance with respect to the 
benchmark and hence given for j=1...100 by:

In the case, that the benchmark is a constant, hence a nominal 
value, the variation of the benchmark vanishes, and this 
formula results in the equation of the “Computing the Expected 
Shortfall in Practice” section.

The Deterministic Asset as Benchmark
If the benchmark is the risk-free investment, then this 

investment has a deterministic payoff profile, and there is 
no reason to estimate the distribution of this investment. 
Accordingly, only the current risk-free interest rate r0 and the 
time horizon of the risk measurement τ, which is always one 
week in this paper, are relevant. Hence the variation of the 
benchmark is given by

This value for δB
j does not change for the mirrored scenarios 

since the effect of the current risk-free investment is 
immediately obvious. Using the formulas of this section or the 
translation invariance axiom, one can show that an investment 
of an amount in the deterministic asset has a nominal risk of

If this risk calculation is carried out against the deterministic 
investment over a period corresponding to the risk horizon, then 
the expected shortfall is obviously 0. Such a portfolio always 
shows exactly the change in value of the benchmark, and in 
this interpretation, it is therefore risk-free. This consideration 
applies regardless of the sign of ro and holds in particular also 
for negative interest rates.

A Trend-Following Approach to 
Estimate Future Returns

The Introduction pointed to two criticisms of the Modern 
Portfolio Theory. In addition to risk measurement based on 
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variance, the development of portfolio theory has suggested 
that the yield on the securities can be estimated. However, this 
aspect has not been further investigated in the Modern Portfolio 
Theory. At this point, the technical analysis could provide 
additional insight. One central principle of our discipline says:

The trend is your friend!

Accordingly, the idea is to estimate future returns on a 
security based on its historical return. This is certainly the 
simplest way, and there are definitely more advanced methods 
available in technical analysis. But on the one hand, such a 
simple procedure easily allows one to implement a backtest 
of the strategy, and on the other hand, it is sufficient to beat 
the market, as the backtest will show in the “A Trading System 
Based on the Coherent Market Portfolio” section.

Estimation Based on Rate of Change
The rate of change (RoC) is computed based on the close of 

two days: The current price C0 and the price CT a certain period T 
ago. Throughout this work, the period T will be one year, hence 
the rate of change will serve as expected annual return.

Estimation by Linear Regression
The above yield estimate is only based on the prices of two key 

dates and does not consider the price development during this 
year. In this respect, the simple idea can easily be improved by 
using a linear regression on the data to estimate the historical 
return of r a given stock. In this approach, the close prices of the 
stock should be approximated by the function exp (λ + rt). For 
the practical calculation, the price data of the stock of a certain 
period (for example, within 1 year) are used, these are denoted 
by Cti, with i = 1…N. To determine the regression, first the 
logarithm is calculated for this data. Let Xi := In In Cti, then there 
is a linear relationship λ + rt assumed for this data. The position 
parameter λ is not relevant for the further analysis, and r can 
be calculated using the following equations. First, calculate the 
means and  and finally r is given by:

Thus, r is the historical return calculated on the time scale 
used to measure ti. Unless the above calculation has not be 
performed in “years”, the result r has to be scaled in order to get 
an annualized rate of return.

The Coherent Market Portfolio

Definition
In the “Modern Portfolio Theory” section, the classical market 

portfolio was presented, which can now be improved with regard to:

1.	 The risk measurement was performed using the standard 
derivation. In the “Coherent Measures of Risk” section, 
it explained that a risk measure should be coherent and 
therefore, the standard derivation should be replaced by the 

expected shortfall. To assign the deterministic investment a 
risk of 0, any risk measurement should be performed using 
the deterministic investment as benchmark.

2.	 In classical portfolio theory, it is assumed that the returns 
of the securities are known and are generally greater than 
the risk-free interest rate. However, the returns of the 
securities may also be negative; as you know, there are also 
downward trends! The technical analysis provides concrete 
methods for estimating returns, and two simple approaches 
have been provided in the “A Trend Following Approach to 
Estimate Future Returns” section.

If these two adaptations are transferred to the classical 
definition of the market portfolio, a very similar picture to 
Figure 2 appears at first glance. Again, the capital market 
line is a straight line, as a mixture between the deterministic 
investment P0 with yield r0, and any other portfolio Pany with 
return rany is linear again in the mixing ratio w:

In this calculation, it was assumed that the expected shortfall 
was computed against the benchmark P0, the deterministic 
investment.

Figure 3. The coherent market portfolio

Taking a closer look at this figure, the differences from 
Figure  2 of the Modern Portfolio Theory become clear:

•• The deterministic investment P0 not only determines the 
deterministic rate r0 but also serves as a benchmark for the 
risk measurement. Therefore, the P0 is again risk-free like in 
the Modern Portfolio Theory.

•• The assessment of risk is performed using a coherent 
measure of risk, namely using the expected shortfall.

•• To determine the expected returns of the securities, a method 
based on technical analysis is applied.

•• The coherent market portfolio Pcoherent is characterized by 
maximizing the ratio of expected excess return and risk; 
hence, for all portfolios, P holds:
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•• There is no restriction on the expected returns of a stock: It 
can be smaller than r0 and could also become negative.

The last point leads to another difference to the classical 
market portfolio, especially in the case that short selling is 
allowed: If no shares have returns above the interest rate of the 
deterministic investment, the return of the coherent market 
portfolio would be less than r0. However, such an investment 
makes no sense at all: Less income but more risk than the 
deterministic investment! In such an environment (e.g., in a 
classical bear market), the deterministic investment is preferable 
to an equity investment. The coherent market portfolio will not 
exist in such a situation if short selling is prohibited.

On the Uniqueness of the Coherent Market Portfolio
In Figure 3, the portfolio frontier is represented in the usual 

form of the Modern Portfolio Theory (black line). Against the 
background of the more complex risk calculation, however, 
a closed formula for this line is no longer given. Therefore, 
the question arises whether the graph is still appropriate and 
whether the coherent market portfolio is as well defined as it is 
shown in the figure.6 To answer this question, it will be shown 
below that the frontier line is still convex if the risk is measured 
by the expected shortfall or any other coherent measure of 
risk. Since the coherent market portfolio is the result of a linear 
optimization on the convex set of achievable portfolios, the 
coherent market portfolio is unique.

To show that the set of achievable portfolios is convex, it 
is sufficient to show that the connection line between two 
arbitrary portfolios, P1 and P2, is completely contained in the 
set of achievable portfolios. Let 0≤w≤1 denote the expected 
return of the portfolios P1 and P2 by r1 and r2, and define P(w) 
=wP1 + (1–w)P2. Then, for the expected return and the risk of 
the portfolio P(w), measured either by expected shortfall or any 
coherent measure of risk, the following equations hold:

Hence, the risk of the portfolio Pw is either smaller than the 
sum of the risk of the sub-portfolios or—in the case that equality 
holds in the last equation—it lies on the connecting line of the 
two portfolios. Since its risk is never greater, the connecting line 
is completely contained in the set of achievable portfolios, and 
so the portfolio frontier is convex.

How to Determine the Coherent Market Portfolio
To determine the coherent market portfolio, one must rely 

on numerical methods since the more complex risk calculation 
prevents any closed form solution for the portfolio frontier 
or the optimal portfolio weights. The good news is that the 
coherent market portfolio is the result of linear optimization on 
a complex set, and hence, even simple numerical algorithms will 
find the solution.

Consider a universe of N stocks together with a short-selling 
restriction, then a portfolio can be described by weights wi≥0, 

which represent the fraction of the portfolio to be invested in 
the ith stock. Hence, there is the restriction

Let denote ri denote the expected return of the ith stock, then 
the expected return of the portfolio is given by

To determine the expected shortfall, the single loss scenarios 
can also be easily computed by

Computing the expected shortfall requires a sorting of 
the losses L j, and hence, the risk has to be computed for each 
portfolio composition.

A simple algorithm to determine the portfolio weights of the 
coherent market starts with any portfolio composition and then 
varies this composition gradually. In such a variation, a small 
fraction (e.g., 1%) of the portfolio weight is taken away from 
the ith stock, provided it has such a high weight, and instead 
increases the weight of the stock Jth. This variation is performed 
for each combination of i and j, hence at most N(N – 1) 
combinations. For each of these combinations, the following 
ratio will be determined:

The combination, which yields to the largest ratio, is the first 
modification step of the portfolio, and the next iteration starts. 
Such successive optimization of the portfolio is performed 
until no improvement of the ratio can be achieved any more 
by a small change in the portfolio composition, and hence, the 
coherent market portfolio is obtained.

A Trading System Based on the 
Coherent Market Portfolio

Introduction of the Trading System
To complete the so far theoretical work, its practical use 

is now demonstrated. For this purpose, an ETF investment is 
considered in the European market on the one hand, and on 
the other hand, in the American stock market. Since a portfolio 
analysis is far too complex on all equities in the relevant market, 
the investment universe chosen are the ETFs of the sector 
subdivisions commonly used in the relevant market, and the 
interest rate for the deterministic investment is given by the 
deposit rate of the responsible central bank.

To ensure that the coherent market portfolio is truly 
composed of multiple positions, it is assumed that at least half 
of the sector ETFs have a return expectation above the central 
bank’s interest rate. If this is not the case, the investment is 
made at the central bank interest rate. However, if there is 
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a sufficient market breadth, the coherent market portfolio 
will be determined and investment will be made precisely in 
this coherent market portfolio. In order to keep the costs for 
the reallocations low, the analysis is carried out on the first 
weekend of each month and the portfolio changeover will take 
place at the opening on the following Monday.

Results of the Backtesting

Backtesting in the European Stock Market
The European market is subdivided into the 19 sectors7 listed 

in Table 2, and there is an iShares STOXX Europe 600 ETF for each 
sector available and used in the backtest. The chosen market 
benchmark is hence given by the iShares STOXX Europe 600 ETF, 
and the interest rate for the deterministic investment is given 
by the deposit facility of the European Central Bank. If an ETF 
was launched during the backtest phase, it was considered for 
investment past one year after its launch date.

Table 2. The Industry Sectors in the European Market

Automobiles & Parts Industrial Goods & 
Services

Technology

Banks Insurance Telecommunications

Chemicals Media Travel & Leisure

Construction & 
Materials

Oil & Gas Utilities

Financial Services Personal & Household 
Goods

Basic Resources

Food & Beverage Retail Real Estate Cap

Health Care

Figures 4 and 5 show the equity curve of the buy-and-hold 
approach and the investment in the coherent market portfolio 
subject to the condition of a sufficient market breadth according 
to the described strategy. The advantage is obvious: there is 
a larger yield with less drawdown. Of course, the method to 
estimate the ETF returns has an impact on the results, but the 
benefit is independent of the chosen estimation method (rate-
of-change or linear regression). The figures also show the phases 
in which the coherent market portfolio-based strategy is only 
invested in the money market. The numerical results of the 
backtest are listed in Table 3.

Figure 4. Backtest in the European Market Using the 
Rate of Change

Figure 5. Backtest in the European Market Using the 
Linear Regression

Table 3. Key Figures of the Backtest in the European Market

Coherent Market Portfolio 
Strategy

Buy and Hold Using Rate of 
Change

Using Linear 
Regression

Period January 2004 to December 2018

Seed Capital 100,000 EUR
Final Capital 141,945 EUR 171,735 EUR 242,975 EUR
Maximum 
Drawdown

60.8% 28.0% 27.3%

Backtesting in the American Stock Market
The usual sector division in the U.S, market is less granular,8 

and the ETFs used for the backtest are listed in Table 4.

Table 4. The ETFs Used in the Backtest of the American 
Market

S&P 500 Communication Sector SPDR S&P 500 Industrial Sector SPDR
S&P 500 Cons Staples Sector SPDR S&P 500 Info Tech Sector SPDR
S&P 500 Consumer Disc Sector SPDR S&P 500 Materials Sector SPDR
S&P 500 Energy Sector SPDR	 S&P 500 Real Estate Sector SPDR
S&P 500 Financials Sector SPDR S&P 500 Utilities Sector SPDR	
S&P 500 Healthcare Sector SPDR

The benchmark used in this market is the S&P 500 SPDR, 
and the interest rate for the deterministic investment is the 
Federal Funds Effective Rate. As before, Figure 6 and Figure 7 
show the equity curve of this backtest. Again, the buy-and-hold 
approach looks worse than the equity curve of the investment 
in the coherent market portfolio, with respect to total return 
in terms of the maximum drawdown. The numerical results 
are listed in Table 5. Again, the strategy based on the Linear 
Regression outperforms the strategy using the more primitive 
estimation approach based on the Rate-of-Change.

Figure 6. Backtest in the American Market Using the 
Rate of Change
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Figure 7. Backtest in the American Market Using the 
Linear Regression

Table 5. Key Figures of the Backtest in the American Market

Coherent Market Portfolio 
Strategy

Buy and Hold Using Rate of 
Change

Using Linear 
Regression

Period January 2000 to December 2018

Seed Capital 100,000 USD

Final Capital 243,197 USD 480,784 USD 539,120 USD

Maximum 
Drawdown

55.2% 17.4% 17.2%

Conclusion
“Don’t Put All Your Eggs in One Basket” is the classical 

investment advice to draw attention to diversification as 
part of an investment approach. The theoretical basis for the 
benefits of diversification was established by Harry Markowitz 
and William Sharpe in their Modern Portfolio Theory. Despite 
the great importance of their work in economics, two criticisms 
of their work are often cited: On the one hand, they do cover 
the issue of estimating the returns of the stocks in a portfolio 
and, on the other hand, they use the standard deviation to 
measure risk. Recent research has introduced a new notion of 
coherent risk measures, and the estimation of stock returns 
is a core application of technical analysis. In the present work 
solutions for the criticisms of the Modern Portfolio Theory 
were presented and subjected to a first practical test.

To estimate the asset returns, two quite simple approaches 
have been used in this paper. In spite of their simplicity, both 
approaches were advantageous, and that alone verifies the 
famous statement, “The trend is your friend”! In both markets, 
the backtests showed that the estimation of the returns 
using the Linear Regression is superior to the more primitive 
estimation based on the Rate-of-Change. This reinforces the 
assumption that better estimation methods from technical 
analysis can yield even better results here.

From the perspective of risk, the presented strategy based 
on the coherent market portfolio also convinces: The maximum 
drawdowns of the strategies are well below the drawdown of a 
buy-and-hold approach.

In summary, coherent risk measurement and an estimate of 
stock returns using technical analysis provides the necessary 
building blocks for updating the Modern Portfolio Theory. 
Hence, a coherent market portfolio is defined that concretizes 
the introductory phrase since it provides a procedure that 
determines exactly how much to invest in which stock (i.e., 
“How many eggs should be put in which basket?”)

Market Data
The price data for ETFs in the European market were obtained 

through the software TAI-PAN from the provider Lenz+Partner 
GmbH (www.lp-software.de), which is part of the vwd group 
(www.vwd.com). The price data for the U.S. Sector ETFs were 
obtained through finance.yahoo.com from Verizon Media and 
the deposit rates from the websites of the respective central 
banks (www.ecb.europa.eu, www.federalreserve.gov).
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Notes
1	 Commonly, an investment with a fixed income in advance is called a 

“safe” or “risk- free” investment. This terminology is appropriate 
when using the standard deviation as a measure of risk. As other risk 
measures are considered in this paper, such investment will be called 
“deterministic.”

2	 In the following, scalar quantities are printed in normal font, vectors 
and matrices in boldface.

3	 To favor a simpler representation, no integrability conditions are 
considered for ℒ, and hence, ρ may also take the value +∞ according 
to this definition.

4	   The term “translation invariance” is linguistically misleading since 
the translation has an effect on the right-hand side of the equation. 
Therefore, “translation compliant” would be more appropriate, 
but the misleading expression became standard in the context of 
coherent measures of risk.

5	 Here, one can obtain the advantage of the logarithmic scale. Using 
the classical definition of relative changes, one has to consider that 
a share price falling from $100 USD to $80 USD is a relative move 
of -20%, while the counter movement from $80 USD to $100 USD 
corresponds to a relative gain of 25%. Using the logarithmic scale, 
only the sign of changes.

6	 I would like to thank the jury of the VTAD award, who raised this question.
7	 The definition of the European sectors are in line with the 19 

Supersectors of the Industry Classification Benchmark (ICB ®) by 
FTSE Russell.

8	 In the United States, the usual sector definition is in line with the 11 sectors 
of the Global Industry Classification Standard (GICS ®) by MSCI.
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Abstract
Most of the active investment strategies focus on the 

constant excess returns generated over time through a dynamic 
management of positions on the market. These positions are 
subject to possible “black swans,” events that are by definition 
unpredictable, destructive and only explainable afterwards. 
The conventional approach to risk management is to diversify 
investments across asset classes; however, the crashes of 2001 
(dot com bubble) and 2008 (global financial crisis) questioned 
those portfolios that so far had been considered well diversified. 
The risk of such events occurring is called “tail risk.” Over the 
last few years, many tail risk protection strategies have spread, 
often producing unsatisfactory results. This paper aims to 
demonstrate how the combination of an active quantitative 
investment model and an effective tail risk hedging strategy 
leads to the creation of an antifragile portfolio, immune to the 
black swans and able to exploit them to its advantage.

Introduction
In the financial world, the black swan concept has found a 

considerable diffusion thanks to Taleb’s (2007) literary book and 
New York Times bestseller The Black Swan, in combination with 
the turbulences in financial markets.

There are three main factors that describe a black swan event:

•• Rational explanations are given after a black swan event 
occurs. This is based on the fact that humans are able to 
explain and justify unexpected phenomena after it occurred.

•• A black swan event always has an extreme impact: The global 
financial crisis had an extreme and destructive impact on the 
financial markets.

•• A black swan event is unexpected and is deemed 
“improbable.” It is impossible to predict a black swan event 
ahead of time because it is unthinkable for most of the people 
until it happens.

The main issue of black swans is the inability for investors 
to predict such extremes events (tail risk events) and correctly 
incorporate their impact into portfolios; they try to apply 
financial models based on known probabilities instead of 
actually taking into account their unpredictability. Financial 
disasters are therefore very similar to natural disasters. 
Earthquakes, for example, are considered to be random events, 
accidental and unpredictable. The occurrence of seismic events 
on the earth’s surface is a certainty, the uncertainty concerns 
where they will occur, when and to what extent.

Figure 1. Relative annual energy release from 
earthquakes, magnitude 6 or greater, from 1900 
to 2010. Source: U.S Geological Survey, http://www.
johnstonsarchive.net/

Figure 2. Dow Jones Industrial Average (black). Black 
swan indicator (red) shows the market corrections. 
Monthly data, from February 1915 to February 2019.

Through the use of historical data and statistical models it is 
possible to identify areas of higher seismic risk, the same way 
as in the financial markets it is possible to identify the riskiest 
asset classes based on volatility.
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Figure 3. Areas across the United States that are most 
likely to experience a significant earthquake in the next 
50 years. Source: U.S. Geological Survey.

Table 1. Asset classes average annual return and 
standard deviation, from 1926 to 2011. Source: BofA 
Merrill Lunch, Ibbotson.

The unpredictability of earthquakes, however, has not 
prevented humanity from building houses, selecting the most 
suitable land and the best technologies to make the building 
as resistant and flexible as possible to seismic events. The 
rarity, inexplicability and uncertainty of black swans makes 
our investment management models and, consequently, 
our portfolios fragile. The best antidote against fragility is 
antifragility, a system that can take advantage of randomness 
and chaos. This paper aims to demonstrate how merging the 
Sector Rotation Model, a sector rotation quantitative strategy, 
and the Black Swan Hedging Model, a tail risk hedging strategy, 
leads to a model capable of producing excess returns and 
outperformance during both positive market phases and 
extremely negative events. I named such model the Antifragile 
Asset Allocation Model.

Background and Methodology
This paper considers the studies of different authors, 

providing a link between different concepts and methods 
through personal implementation. It is worth mentioning the 
most influential authors, with reference to their contribution:

•• Nassim Nicholas Taleb, for his contribution in defining the 
concept of black swans, indicating how to manage them 
through antifragility.

•• Wouter J. Keller and Hugo S. van Putten, for their contribution 
to the definition of a new quantitative strategy, the Flexible 
Asset Allocation.

•• Meb Faber, for his research on quantitative analysis and 
nondiscretionary strategies.

•• Welles Wilder, for technical studies on breakout, range and 
trend concept models.

•• Robert Engle and Tim Bollerslev, for the development of 
analytical methods of economic historical series with 
dynamic volatility over time.

•• Martin J. Pring, for the works on the stages of the economic 
cycle and their definition.

The paper consists of four parts. The first part covers the 
Sector Rotation Model, managed by a ranking algorithm that 
selects the best sectors. The main quantitative factors of the 
ranking system are explained, and the calculation details are 
shown. The second part explains how some tail risk hedging 
strategies work and how they can be improved through a more 
adaptive strategy such as the Black Swan Hedging Model. 
The third part shows the Antifragile Asset Allocation Model, 
obtained by merging the models mentioned above. The final part 
illustrates the results of model backtesting, represented through 
monthly performances from June 2004 to February 2019.

Sector Rotation Model
Sector rotation consists of shifting investment assets from 

one sector of the economy to another to capture returns from 
different market cycles. Sector rotation strategies are popular 
because they provide diversification and risk-adjusted returns 
over time.

The Sector Rotation Model consists of 11 sectors of the S&P 
500, represented by their respective ETFs.

Table 2. Sector Rotation Model: list of ETFs.

The Sector Rotation Model is the main pillar of the Antifragile 
Asset Allocation Model because of its ability to adapt to 
market cycles (Recession, Early Recover, Late Recovery, Early 
Recession), providing the portfolio flexibility and robustness. 
Each month, the Sector Rotation Model ranks the 11 ETFs based 
on the following factors:

•• (M) Absolute Momentum—to determine assets’ profitability. 
Calculation: 4 months momentum (ROC – Rate of Change).

•• (V) Volatility Model—to determine assets’ risk. Calculation: 
edited version of GARCH Model.

•• (C) Average Relative Correlations—to achieve diversification. 
Calculation: 4 months average correlation across the ETFs.
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•• (T) ATR Trend/Breakout System—to determine assets’ 
directionality. Calculation: ATR Bands on daily timeframe. 
Upper Band = 42 periods ATR + Highest Close of 63 periods. 
Lower Band = 42 periods ATR + Highest Low of 105 periods.

TRANK=(wM * Rank(M)+wV * Rank(V)+wC * Rank(C) – wT *T)+M/n	 (1)

Where:

Rank(M) = ranking from 1 to 11 of the assets based on the 
Absolute Momentum.

Rank(V) = ranking from 1 to 11 of the assets based on the 
Volatility Model

Rank(C) = ranking from 1 to 11 of the assets based on the 
Average Relative Correlation

T = ATR Trend/Breakout System

wM = % weight assigned to for Rank(M) evaluation

wV = % weight assigned to for Rank(V) evaluation

wC = % weight assigned to for Rank(C) evaluation

wT = % weight assigned to for Rank(T) evaluation

n = number of assets

The best five ETFs are selected based on each TRank and are 
equally weighted in the portfolio.

Figure 5. Sector Rotation Model (red) and SPDR S&P 500 
(black), performance comparison. Monthly data from 
August 2003 to February 2019.

The Rotation Sector Model beats the S&P 500 index over 
time, constantly outperforming it. The model demonstrates 
flexibility, adapting to different market cycles, and robustness, 
showing resilience to medium market corrections. However, the 
model is not immune to crashes and black swans, so it needs a 
dedicated protection against such events.

Black Swan Hedging Strategy
In statistics “tails” are defined as the extremes of a 

distribution—the outcomes that have a small probability of 
occurring. In finance, tail risk represents the loss at the most 
negative part of an asset or portfolio’s return distribution 
caused by infrequent and outsized downside market moves. 
Many studies show that equity market returns do not follow 
a normal distribution, with tails fatter than predicted. The 
traditional approach to managing portfolio risk involves 
investment diversification amongst not correlated assets 
classes: if the correlation amongst assets is low, this will 
mitigate the impact of big market corrections on the portfolio; 
however, extreme losses occur during times of crisis or financial 
market distress, characterized by a contagion effect and a 

Table 3. Sector Rotation Model, historical returns. Monthly data from August 2003 to February 2019.
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pronounced rise in many asset classes 
correlations to equities.

Recent market turmoils have 
highlighted that extreme market 
moves occur more frequently than 
most statistical models predict, and 
diversification strategies typically 
break down in these circumstances. 
The infamous black swans of the 
first two decades of the 21st century 
generated attention and investment 
flows aimed to hedge against tail risk. 
Theoretically, a tail risk strategy acts 
as a sort of insurance since it has a low 
or negative required rate of return, 
but it pays off at times of market 
distress. There are several tail risk 
hedging strategies (Puts, Delta-hedged 
options, volatility products), but there 
is significant disagreement regarding 
the efficacy of such strategies and their 
cost/benefit tradeoffs.

Table 4 represents how adding a 
permanent tail risk strategy that buys 
monthly 5% out of the money options 
on the S&P 500 with 90% of allocation 
invested in 10-year U.S. government 
bonds affects portfolio returns.

In all cases, the tail risk strategy 
brings a decrease in drawdowns, 
but the reduction in volatility does 
not compensate for the reduction in 
returns, so the Sharpe Ratio worsens. 
According to the writer’s opinion, the 
current tail risk strategies are too 
static and unable to adapt to different 
types of market corrections.

The Black Swan Hedging Model, 
hereby explained, consists of seven 
ETFs representing different types of 
asset classes that can benefit from 
market corrections of a different 
nature.

The best three ETFs will be 
considered for the upcoming 
allocation, based on the ranking 
system described in the prior 
paragraph. For each of the three ETFs, 
if it has a positive Absolute Momentum 
(M), then it will be included in the 
portfolio; otherwise, its weighting will 
be replaced with cash, represented by 
iShares 1-3 Year Treasury Bond ETF.

In an extreme case where all the top 
three ETFs have a negative Absolute 
Momentum (M), cash will assume a 
100% weighting.

Figure 6. Sector Rotation Model, allocation across time. Monthly data from 
August 2003 to February 2019.

Figure 7. Hypothetical cumulative growth of $100 into 1-Year OTM Puts on the 
S&P. Monthly data from 1996 to 2012. Source: AQR

Table 4. Tail Risk strategy and S&P 500 performance comparison. From June 
1986 to December 2012. Source: Meb Faber/GFD

Table 5. Black Swan Hedging Model: list of ETFs.
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The Black Swan Hedging Model 
provides effective protection against 
market corrections, demonstrating the 
ability to take advantage of the most 
extreme events.

Antifragility
The Antifragile Asset Allocation Model 

represents the union between the Sector 
Rotation Model and the Black Swan 
Hedging Model. The Sector Rotation 
Model selects the five best sector ETFs.

For each of the five ETFs, if it has a 
positive Absolute Momentum (M), then 
it will be included in the Antifragile 
Portfolio with a 20% weighting. If all 
the top five sector ETFs have a negative 
Absolute Momentum (M), the Black Swan 
Hedging Model allocation will assume a 
100% weighting.

The unassigned weighting will be 
replaced with the Black Swan Hedging 
Model allocation.

The Antifragile Asset Allocation 
Model maintains the qualities of the 
strategies from which it derives, showing 
adaptability to different market cycles, 
resilience against market corrections, 
and antifragility against extreme events.

Application and 
Empirical Tests

The Antifragile Asset Allocation 
Model works by applying the algorithms 
discussed in the previous paragraphs. 
The database is end-of-day and it is 
downloaded from Yahoo! Finance. Where 

Figure 8. Black Swan Hedging Model (red) and SPDR S&P 500 (black), 
performance comparison. Monthly data from August 2003 to February 2019.

Figure 9. Black Swan Hedging Model, allocation across time. Monthly data 
from August 2003 to February 2019.

Table 6. Black Swan Hedging Model, historical returns. Monthly data from August 2003 to February 2019.
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necessary, interpolations have been 
made with consistent historical series to 
achieve temporal homogeneity.

Data interpolation was performed on 
RStudio; Absolute Momentum, Volatility 
Model, Average Relative Correlation, and 
ATR Trend/Breakout System indicators 
were programmed on Metastock; 
classification and the rankings were 
programmed on Excel. The test was 
performed on a USD portfolio consisting 
mainly of ETFs to ensure maximum 
plausibility.

Daily and monthly returns are used. 
Simulation results are from August 2003 
through February 2019. No transaction 
costs are included. All results are gross 
of any transaction fees, management 
fees, or any other fees that might be 
associated with executing the models in 
real time.

The current allocation of the portfolio 
is determined by the ranking model of 
the previous month.

The ranking model in the last session 
of the current month determines the 
allocation of the following month.

To assess the effectiveness of the 
proposed strategy, the performance of 
the Antifragile Asset Allocation Model 
was compared to the Salient Risk Parity 
Index, managed by a risk parity portfolio 
with 10% volatility targeting.

Conclusion
In this paper, I focused on creating 

an asset allocation model inspired by 
the concept of antifragility proposed 
by N.N. Taleb: capable of gaining from 
disorder and unpredictable events. 
To achieve this goal, I’ve created a 
ranking algorithm that selects the 
best assets over time. The algorithm 
consists of quantitative factors such 
as Momentum, Correlations, Volatility 
and Trend to determine, respectively, 
profitability, diversification, risk and 
directionality of the assets. To achieve 
antifragility, the ranking system has 
been applied to two models with different 
characteristics: Sector Rotation Model 
and the Black Swan Hedging Strategy. 
The first model beats the benchmark, 
represented by the SPDR S&P 500 ETF, 
and constantly outperforms it over 
time, showing adaptability to different 
economic cycles and robustness during 
medium-sized market corrections. The 

Table 7. Black Swan Hedging Model, statistics summary.

Table 8. Antifragile Asset Allocation Model, list of ETFs and respective 
weighting, updated to 02/19/2019.

Figure 10. Antifragile Asset Allocation Model (red) and SPDR S&P 500 (black), 
performance comparison. Monthly data from August 2003 to February 2019.
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Figure 11. Ranked Asset Allocation Model (red), Salient Risk Parity Index (green), performance comparison.
Monthly data from January 2004 to February 2019.

Table 9. Antifragile Asset Allocation Model, historical returns. Monthly data from August 2003 to February 2019.

Table 10. Antifragile Asset Allocation Model (AAAM) and Salient Risk Parity Index, statistics summary.
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second one proves to be a valid alternative to the most popular 
tail risk hedging strategies, gaining during black swans while 
maintaining low volatility. The antifragility is achieved by 
merging the peculiarities of both models. The Antifragile Asset 
Allocation Model proves to be dynamic and flexible during 
the positive phases of the market, resilient and able to exploit 
negative events of various nature to its advantage.
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I n  M e m o r i a m

Dawn Bolton-Smith
4 April 1930–29 August 2017 

Sydney, Australia

Dawn Heather Bolton-Smith (nee Dearing) was born in 
Earlwood, Sydney, Australia, in April 1930. April 1930 was 
a significant month, not only for Dawn and her family, but 
also for stock markets. It was the month the New York Dow 
Jones Index retraced to a high after the 1929 October crash. 
Following this event, the market then cascaded to its low in 
July 1932. Perhaps that is why Dawn always relished a good 
bear market.

At around age 19, Dawn started a career as a commercial 
artist, which in some ways ties in with what would become her 
future profession, as she brought an artistic flair to her many 
hand drawn charts. In fact, when once questioned by an English 
broker, on why she described the charts as beautiful works of 
art, she simply said “they certainly are to me”.

In 1962 she attended a local evening college to learn technical 
analysis (TA). The lecturer was a young Ian Notley, who was to 
become one of TA’s leading lights. 
He too must have been a fast 
learner, as Dawn said at the time 
that he was always one chapter 
ahead of the students.

Dawn quickly abandoned ideas 
for careers in art or accounting, 
and, armed with no more than a 
burning passion and the latest copy 
of Edwards and Magee’s Technical 
Analysis of Stock Trends, she set 
out to establish a new career in the 
fledgling field of TA in Australia. In the TA world of the 1960s, 
training and computer-generated charts were nonexistent. A 
hard copy book was the source for knowledge, and if you wanted 
a chart of an index, or anything else, it was hand drawn.

Dawn was the first chartist employed by the Australian Stock 
Exchange and later helped establish the futures markets in 
Australia. She was also a founding member of the Australian 
Technical Analysts Association (ATAA), becoming a life member 
of that association as well as the Australian Professional 
Technical Analysts (APTA).

Dawn’s passion for TA led to an office of wall-to-wall charts 
and meticulously organised folders of more and more charts. If 
one were to ask her about the New York Dow Jones, for instance, 
she would recruit the help of the nearest three people to unfurl 
a very long hand drawn chart holding years of history. Dawn 
was always willing to share her vast knowledge, and with her 
enthusiasm, she told many a tale (all true), including one about 
selling gold futures at US$840 before they opened the next day 
down at US$220.

In the 1960s and 1970s, Dawn worked in broking houses 
charting the great Australian resources boom. In 1973, she 
predicted the 1974 stock market crash to within four points of 
the bottom. After a stint working in commodities, Dawn joined 
the National Mutual Royal Bank in their Forex department. Her 
daily Dawn Report with her ideas for the currency moves was a 
fixture of that department for many years. Dawn loved working 
at the bank. It was during this time that she worked in London 
and Canada and travelled widely.

For many years, Dawn contributed a column to The Sunday 
Telegraph newspaper in Sydney and a technical analysis 
commentary for The Bulletin magazine. From 1976 to 1978, she 
was the editor of the trading newsletter Trendex and wrote a 
regular column for the Iris Report from 1994 until 2002.

Even though Dawn formerly retired from the bank in 1992, 
she never really retired. Her lifelong passion was TA, and 

every day she would be in her 
study following the markets. She 
continued to teach and write, 
giving lectures, corresponding 
with fellow practitioners around 
the world, and writing for the 
magazine Your Trading Edge 
up until April 2017. One of her 
favourite charting methods was 
the clustering of moving averages, 
and in her later years it featured in 
many of her talks. Dawn could not 

be without her beloved charts, and when enjoying outings such 
as retiree bus trips, she would take her iPhone with her to check 
the market and record the changes for her point and figure 
charts, which she continued to draw by hand.

Dawn’s career spanned more than 50 years. She was a 
trailblazer for women in an industry that was at the time 
dominated by men; she was a trailblazer for TA, being the first 
market technician to be employed in the Australian Stock 
Market; and she was the first chartist to write for The Bulletin 
magazine, a woman no less. During her long career, she received 
many accolades and awards, all of which she took in stride 
with her characteristic modesty. When talking about her life’s 
work, she simply described herself as “not just your average 
housewife”. However, there was one accolade that she quite 
enjoyed, appealing to her ironic sense of humour, which was 
David Fuller dubbing her the “iron lady of technical analysis”.

Compiled by Regina Meani from her memories of Dawn and from contributions 
made by Chris White, one of Dawn’s lifelong friends, and Jen Hendriksen (nee 
Charles), who was mentored by both Dawn and David Fuller.
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It was with a shiver that I read David Fuller’s foreword to 
Crowd Money. We sadly lost David Fuller earlier this year, and 
while this is a review of Eoin Treacy’s Crowd Money, I feel that 
it is also a tribute to David Fuller and his great achievements 
in the field of technical analysis. In Crowd Money we gain an 
insight into Fuller’s methodology based on lifelong observation1 

in behavioural technical analysis.
Eoin Treacy has a degree in philosophy from Trinity College, 

Dublin and joined Fullermoney in 2003 after three years with 
Bloomberg teaching seminars on the interpretation of price 
action. At Fullermoney he specialised 
in Fuller’s unique approach to 
combining technical, fundamental 
and behavioural analysis for their 
research and investment strategy.

In his introduction, Eoin Treacy 
tells us a basic truth that not only 
applies to macro behavioural 
technical analysis but to all forms of 
market analysis. He suggests that 
our analysis should be devoted to 
ensuring we learn the lessons market 
history is teaching us so that we can 
script how markets will perform in 
future.2

As I began to browse the chapters, 
I must confess that I quickly jumped 
to “Chapter 23: Themes for the 
Decades between 2015 and 2025,” 
excited at the prospect of what it 
may hold. Here, Treacy proposes that 
we need to identify the motivating 
theme behind the market action. 
He addresses the broad principles 
from which he believes should be 
the major influences of market 
strategy through the prime driver 
of productivity—these being 
labour, population, the influence of 
unconventional energy production, the leaps and bounds in 
technology, and the use of debt. Treacy concludes that if these 
factors come together to increase productivity, then there could 
be a confluence of powerfully bullish outcomes.3

The early chapters treat us to Treacy’s interpretation of the 
differences between chart reading and technical analysis. He 
delves into the concept of emotional intelligence and the role 
that fear, greed, and love play in our investment “relationships.” 

He moves on to break down the psychological stages of major 
bull and bear market cycles.

Chapter 9 takes an interesting foray into consistency in 
trends and the mistakes we make with charts. There are three 
things you will see on a chart: what you want to see, what you 
think you will see and what is really there.4 He terms this Triple 
Vision. Within this chapter, he suggests that as we progress 
in our analysis, we also need to ask the right questions. When 
we ask what the target is and where the price is going, we are 
asking the correct questions, but where you pose them is the 

real question. As he scopes the trend, 
Treacy believes that these should be 
the last questions that one asks, not 
the first.

Chapters 11 through 16 deal with 
some of the more useful technical 
analysis techniques, which include 
moving averages, trends, reversals 
and more behavioural practices. 
Following this, he discusses how we 
should address the significance of 
monetary policy, governance, and 
the regulatory system and how they 
can affect our investment strategy.

Finally, he presents us with 
his “Autonomies,” a term coined 
by David Fuller to label large 
multinational companies, which he 
calls mobile principalities…they are 
independent, powerful, mobile ‘mini 
countries’ that focus where the best 
potential for profit exists5

Eoin Treacy has given us an 
amazing insight into the Fullermoney 
methodology in a very readable and 
practical guide and allows it to stand 
as a testament to David Fuller’s 
legacy.

References
1	 E Treacy, Crowd Money, A Practical Guide to Macro Behavioural 

Technical Analysis, Harriman House, Hampshire, Great Britain, 2013, 
p xi

2	  ibid, p xvii
3	  ibid, p 265
4	  ibid, p 97
5	  ibid p, 276
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Author Profiles

Thomas Bulkowski
Thomas Bulkowski is a private investor and 
trader with almost 40 years of market 
experience and is considered by some to be a 
leading expert on chart patterns. He is the 
author of several books, including Chart 
Patterns: After the Buy; Getting Started in Chart 

Patterns, Second Edition; and the Evolution of a Trader trilogy. His 
website and blog, www.thepatternsite.com, have more than 700 
articles of free information dedicated to price pattern research.

Min Deng
Min Deng has 28 years of extensive work experience 
in the Chinese stock markets, along with 20 years of 
hands-on expertise in the international financial 
futures markets. By relying on such experience and 
on the significant breakthrough achievements 
accomplished on the actual investor behavior and 

stock price behavior, he is capable of making his independent 
judgment on whether or not the mainstream financial investment 
theories are scientific in nature. His two representative research 
papers, titled “Death of the EMH” and “Death of the CAPM,” which 
were accepted for presentation at leading financial conferences, 
successfully drew the attention of the financial academic circles and 
financial investment management circles worldwide.

Min had once managed two investment service companies 
and had been in charge of a large research project developing 
global financial futures trading systems involving a total cost of 
more than 1 million US$ spanning over 10 years. Currently, he is 
providing customized investment consultancy services to a large 
private financial investment group in China and several wealthy 
overseas Chinese family businesses abroad. Together with his 
partners, he is planning on implementing a large-scale investment 
education project drawing on his theoretical studies achievements 
and hands-on trading techniques to educate the Chinese investors 
in their hundreds of millions. In this regard, prior support-
cum-approval is being sought from the Chinese securities 
administration authorities. At the same time, he is acting as the 
China representative of one of the biggest names in Wall Street 
dealing with B shares trading in the Chinese stock markets.

Akram El Sherbini, CETA, CFTe, MFTA
Akram El Sherbini, CETA, CFTe, MFTA, holds a B. 
Sc. in physics from the American University in 
Cairo. He has been involved in financial markets 
since 2007. Prior to freelancing, he was a 
technical analyst at Synergy Capital Markets 
and dealing desk team leader at Candle Egypt. 

His focus is on creating new technical indicators as well as 
developing unified trading systems for equity and FX markets. 
He is the creator of the time cycle oscillators and the 
performance indicators. Akram is also a member of the 
Egyptian Society of Technical Analysts (ESTA).

Gioele Giordano, CSTA, CFTe
Gioele Giordano, CSTA, CFTe, is a student at the 
University of Modena and Reggio Emilia in the 
Department of Economics Marco Biagi. Gioele 
served as a financial analyst for Market Risk 
Management s.r.l (MRM), a leading firm in 
independent financial advisory for institutional 

and private clients, based in Milan. As an analyst, he wrote 
reports on the main asset classes and developed quantitative 
investment models. Gioele is a member of the Italian Society of 
Technical Analysis (SIAT) and won the SIAT Technical Analyst 
Award in 2016 and the Charles H. Dow Award in 2018. He is the 
2019 NAAIM Founders Award winner for his paper “Antifragile 
Asset Allocation Model.”

Christian Lundström, Ph.Lic.
Christian Lundström received his B.S., M.S., and 
Ph.Lic. degrees in economics from Umeå 
University, Sweden. As a researcher, he is the 
author of numerous peer-reviewed papers 
related to investing, technical trading 
strategies, and money management. Christian is 

the head of the Fund Selection and Compliance Unit at the 
Swedish Pensions Agency, overseeing the fund selection/due 
diligence work for all funds in the premium pension fund 
platform (one of the largest fund platforms in the world). 
Christian has a strong background as an investor in all major 
asset classes from his previous employment as fund manager at 
Carnegie Investment Bank, senior advisor in manager selection 
at Folksam, and chief investment officer at Independent 
Investment Group.

Regina Meani, CFTe
Regina Meani, CFTe, covered world markets as a 
technical analyst and associate director for 
Deutsche Bank prior to freelancing. She is an 
author in the area of technical analysis and is a 
sought-after presenter both internationally and 
locally, lecturing for various financial bodies and 

universities as well as the Australian Stock Exchange. Regina is 
a founding member and former president of the Australian 
Professional Technical Analysts (APTA) and a past Journal 
director for IFTA. She carries the CFTe designation and the 
Australian AMT (Accredited Market Technician). She has regular 
columns in the financial press and appears in other media 
forums. Her freelance work includes market analysis, webinars, 
and larger seminars; advising and training investors and traders 
in market psychology; CFD; and share trading and technical 
analysis. She is also a former director of the Australian 
Technical Analysts Association (ATAA) and has belonged to the 
Society of Technical Analysts, UK (STA) for over 30 years. 
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Alessandro Moretti, CFTe, MFTA
Alessandro Moretti, CFTe, MFTA, is an 
independent technical analyst in the stock 
market. He is the author of the book Smart 
Investing: How to Invest in Stocks with Success.

Alessandro founded the project 
SegnaliDiTrading.net in 2016, where he plays the 

role of a creator of an operative strategy, handles investment 
portfolios, and provides professional financial education for 
retail and professional clients.

In his latest paper, Alessandro presented the investment 
strategy based on sector rotation, which, through the combined 
use of relative strength and Donchian channels, allows one to 
beat the American stock market in the long-term perspective. 
His research was carried out over a period of 20 years using 
both sectoral indices for a theoretical study and also ETFs. With 
the achieved results, Alessandro had the chance to apply the 
strategy to his portfolios.

Dr. Oliver Reiss, CFTe, MFTA
Dr. Oliver Reiss, CFTe, MFTA, received a master’s 
degree in physics from the University of 
Osnabrueck and a Ph.D. in mathematics from 
the University of Kaiserslautern—the latter for 
his research on financial mathematics 
performed at the Weierstrass Institute in Berlin. 

Oliver works in the banking industry and is a self-employed 
consultant for financial institutions, with a focus on risk 
control, derivatives pricing (quant), and related IT 
implementations.

As a private investor, Oliver was interested in technical 
analysis and joined the Vereinigung Technischer Analysten 
Deutschlands e.V. (VTAD) when he became a freelancer in 
2011. Currently, Oliver serves as deputy manager of the VTAD’s 
regional group in Dusseldorf and is a frequent attendee of 
the IFTA conferences. He will present his research at the IFTA 
conference in Cairo this year. Due to his mathematical and 
programming expertise, he is focused on the development and 
backtesting of mid-term trading strategies.

In his John Brooks Memorial Award-winning MFTA paper, 
Oliver presents an introduction to the Empirical Mode 
Decomposition (EMD), which is designed to identify cycles with 
changing amplitude or wavelength.

Dr. Patrick Winter
Dr. Patrick Winter lives in Germany and is an IT 
entrepreneur. He has earned two B.Sc. degrees 
and a doctoral degree in information systems 
and business administration, all with 
distinction, from the Universities of Osnabrück 
and Marburg. He is especially interested in 

methodological research, which he regularly applies to trading. 
For these articles, he won awards from the VTAD (Association of 
Technical Analysts in Germany) four times in a row. He usually 
does not trade himself, however, because he is convinced that it 
is even more efficient to create value than to trade it, especially 
as investors then have an incentive to work with rather than 
against each other.

Kersten Wöhrle, MFTA
Kersten Wöhrle, MFTA, started his career with 
an apprenticeship as a precision mechanic. For 
further career development, he focused on the 
growth market of medical technology and 
laboratory diagnostics. Therefore, he studied 
medical technology at the MTAE in Esslingen 

and earned the electronics certificates II, III, IV C and IV D in his 
free time while working in Munich. Over the next 30 years, he 
worked for two leading employers in the research and 
development of medical systems and laboratory diagnostic 
systems. In the last 10 years prior to his retirement in 2017, he 
worked as a product manager for coagulation systems for 
professional laboratory diagnostics.

For 25 years, Kersten has been intensively involved with 
financial market analysis in his free time. His focus and interest 
is the search and analysis of natural cyclical patterns that 
reveal a synchronicity with the financial markets. The biggest 
discovery so far was the 27.02 Day Cycle. Based on this cycle, 
the 27.02 Day Cycle model was developed. In his MFTA paper, 
Kersten describes the mathematical relationship of the 27.02 
Day Cycle with the solar rotation period, the anomalistic period 
of the earth, Pi, and the fine-structure constant. Kersten uses 
the example of the S&P 500 to demonstrate how the emergence 
of emancipated cycles can be detected and calculated with the 
27.02 Day Cycle as carrier frequency and natural time base.

Since 2015, Kersten has been a member of the VTAD in 
Frankfurt. He has since presented the 27.02 Day Cycle Model 
at several regional conferences. Due to the great interest, the 
current status since 2017 is published on the VTAD homepage 
with every 27.02 Day Cycle completion. This makes the 27.02 Day 
Cycle Model forecast transparent to all interested parties and 
comparable to the actual development.
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Master of Financial Technical Analysis (MFTA) Program
IFTA’s Master of Financial Technical Analysis (MFTA) represents the 
highest professional achievement in the technical analysis community, 
worldwide. Achieving this level of certification requires you to submit 
an original body of research in the discipline of international technical 
analysis, which should be of practical application.

Examinations
In order to complete the MFTA and receive your Diploma, you must 
write a research paper of no less than three thousand, and no more than 
five thousand, words. Charts, Figures and Tables may be presented in 
addition.
Your paper must meet the following criteria:
•	 It must be original
•	 It must develop a reasoned and logical argument and lead to a sound 

conclusion, supported by the tests, studies and analysis contained in 
the paper

•	 The subject matter should be of practical application
•	 It should add to the body of knowledge in the discipline of international 

technical analysis

Timelines & Schedules
There are two MFTA sessions per year, with the  
following deadlines:

Session 1
“Alternative Path” application deadline February 28
Application, outline and fees deadline May 2
Paper submission deadline October 15

Session 2
“Alternative Path” application deadline July 31
Application, outline and fees deadline October 2
Paper submission deadline March 15 (of the 

following year)

To Register
Please visit our website at http://www.ifta.org/certifications/ 
master-of-financial-technical-analysis-mfta-program/  
for further details and to register.

Cost
$950 US (IFTA Member Colleagues);  
$1,200 US (Non-Members)

Certified Financial Technician (CFTe) Program 
IFTA Certified Financial Technician (CFTe) consists of the CFTe I and CFTe 
II examinations. Successful completion of both examinations culminates 
in the award of the CFTe, an internationally recognised professional 
qualification in technical analysis.

Examinations
The CFTe I exam is multiple-choice, covering a wide range of technical 
knowledge and understanding of the principals of technical analysis; it is 
offered in English, French, German, Italian, Spanish, Arabic, and Chinese; 
it’s available, year-round, at testing centers throughout the world, from 
IFTA’s computer-based testing provider, Pearson VUE.
The CFTe II exam incorporates a number of questions that require essay-
based, analysis responses. The candidate needs to demonstrate a depth 
of knowledge and experience in applying various methods of technical 
analysis. The candidate is provided with current charts covering one 
specific market (often an equity) to be analysed, as though for a Fund 
Manager.
The CFTe II is also offered in English, French, German, Italian, Spanish, 
Arabic, and Chinese, typically in April and October of each year. 

Curriculum
The CFTe II program is designed for self-study, however, IFTA will 
also be happy to assist in finding qualified trainers. Local societies 
may offer preparatory courses to assist potential candidates. 
Syllabuses, Study Guides and registration are all available on the 
IFTA website at http://www.ifta.org/certifications/registration/.

To Register
Please visit our website at http://www.ifta.org/certifications/
registration/ for registration details.

Cost
IFTA Member Colleagues Non-Members
CFTe I $550 US CFTe I $850 US
CFTe II $850* US CFTe II $1,150* US

*Additional Fees (CFTe II only): 
$100 US applies for non-IFTA proctored exam locations


